Z. Zang and Y. Zhang, “Low-switching power (< 45 mw) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).

[Crossref]

Z. Wu, Q. Qiao, F. Wu, and L. Cai, “Research on fiber Bragg grating spectral optimization with particle swarm optimization algorithm,” Appl. Mech. Mater. 128, 690–693 (2012).

[Crossref]

Z. Zang, “Numerical analysis of optical bistability based on fiber Bragg grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2011).

[Crossref]

F. Teng, W. Yin, F. Wu, Z. Li, and T. Wu, “Analysis of a fiber Bragg grating sensing system with transverse uniform press by using genetic algorithm,” Opto-electron. Lett. 4, 121–125 (2008).

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. Ny, and C. Boisrobert, “Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings,” J. Opt. A-Pure Appl. Op. 8, 775 (2006).

[Crossref]

S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Sruct. 7, 248–256 (1998).

[Crossref]

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).

[Crossref]

M. Muriel and A. Carballar, “Internal field distributions in fiber Bragg gratings,” Phot. Tech. Lett. IEEE 9, 955–957 (1997).

[Crossref]

B. Eggleton, P. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).

[Crossref]

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. Ny, and C. Boisrobert, “Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings,” J. Opt. A-Pure Appl. Op. 8, 775 (2006).

[Crossref]

Z. Wu, Q. Qiao, F. Wu, and L. Cai, “Research on fiber Bragg grating spectral optimization with particle swarm optimization algorithm,” Appl. Mech. Mater. 128, 690–693 (2012).

[Crossref]

M. Muriel and A. Carballar, “Internal field distributions in fiber Bragg gratings,” Phot. Tech. Lett. IEEE 9, 955–957 (1997).

[Crossref]

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. Ny, and C. Boisrobert, “Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings,” J. Opt. A-Pure Appl. Op. 8, 775 (2006).

[Crossref]

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. Ny, and C. Boisrobert, “Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings,” J. Opt. A-Pure Appl. Op. 8, 775 (2006).

[Crossref]

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of International Conference on Neural Networks, ed. (IEEE, 1995), vol. 4, pp. 1942–1948.

B. Eggleton, P. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).

[Crossref]

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).

[Crossref]

S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Sruct. 7, 248–256 (1998).

[Crossref]

M. LeBlanc, S. Huang, M. Ohn, A. Guemes, and A. Othonos, “Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis,” Opt. Lett. 21, 1405–1407 (1996).

[Crossref]
[PubMed]

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of International Conference on Neural Networks, ed. (IEEE, 1995), vol. 4, pp. 1942–1948.

B. Eggleton, P. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).

[Crossref]

S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Sruct. 7, 248–256 (1998).

[Crossref]

M. LeBlanc, S. Huang, M. Ohn, A. Guemes, and A. Othonos, “Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis,” Opt. Lett. 21, 1405–1407 (1996).

[Crossref]
[PubMed]

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. Ny, and C. Boisrobert, “Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings,” J. Opt. A-Pure Appl. Op. 8, 775 (2006).

[Crossref]

F. Teng, W. Yin, F. Wu, Z. Li, and T. Wu, “Analysis of a fiber Bragg grating sensing system with transverse uniform press by using genetic algorithm,” Opto-electron. Lett. 4, 121–125 (2008).

J. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (John Wiley and Sons Inc, 2002).

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. Ny, and C. Boisrobert, “Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings,” J. Opt. A-Pure Appl. Op. 8, 775 (2006).

[Crossref]

S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Sruct. 7, 248–256 (1998).

[Crossref]

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).

[Crossref]

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. Ny, and C. Boisrobert, “Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings,” J. Opt. A-Pure Appl. Op. 8, 775 (2006).

[Crossref]

S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Sruct. 7, 248–256 (1998).

[Crossref]

B. Eggleton, P. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).

[Crossref]

B. Eggleton, P. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).

[Crossref]

Z. Wu, Q. Qiao, F. Wu, and L. Cai, “Research on fiber Bragg grating spectral optimization with particle swarm optimization algorithm,” Appl. Mech. Mater. 128, 690–693 (2012).

[Crossref]

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. Ny, and C. Boisrobert, “Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings,” J. Opt. A-Pure Appl. Op. 8, 775 (2006).

[Crossref]

F. Teng, W. Yin, F. Wu, Z. Li, and T. Wu, “Analysis of a fiber Bragg grating sensing system with transverse uniform press by using genetic algorithm,” Opto-electron. Lett. 4, 121–125 (2008).

Z. Wu, Q. Qiao, F. Wu, and L. Cai, “Research on fiber Bragg grating spectral optimization with particle swarm optimization algorithm,” Appl. Mech. Mater. 128, 690–693 (2012).

[Crossref]

F. Teng, W. Yin, F. Wu, Z. Li, and T. Wu, “Analysis of a fiber Bragg grating sensing system with transverse uniform press by using genetic algorithm,” Opto-electron. Lett. 4, 121–125 (2008).

F. Teng, W. Yin, F. Wu, Z. Li, and T. Wu, “Analysis of a fiber Bragg grating sensing system with transverse uniform press by using genetic algorithm,” Opto-electron. Lett. 4, 121–125 (2008).

Z. Wu, Q. Qiao, F. Wu, and L. Cai, “Research on fiber Bragg grating spectral optimization with particle swarm optimization algorithm,” Appl. Mech. Mater. 128, 690–693 (2012).

[Crossref]

F. Teng, W. Yin, F. Wu, Z. Li, and T. Wu, “Analysis of a fiber Bragg grating sensing system with transverse uniform press by using genetic algorithm,” Opto-electron. Lett. 4, 121–125 (2008).

Z. Zang and Y. Zhang, “Low-switching power (< 45 mw) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).

[Crossref]

Z. Zang, “Numerical analysis of optical bistability based on fiber Bragg grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2011).

[Crossref]

Z. Zang and Y. Zhang, “Low-switching power (< 45 mw) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).

[Crossref]

Z. Wu, Q. Qiao, F. Wu, and L. Cai, “Research on fiber Bragg grating spectral optimization with particle swarm optimization algorithm,” Appl. Mech. Mater. 128, 690–693 (2012).

[Crossref]

F. Casagrande, P. Crespi, A. Grassi, A. Lulli, R. Kenny, and M. Whelan, “From the reflected spectrum to the properties of a fiber Bragg grating: a genetic algorithm approach with application to distributed strain sensing,” Appl. Opt. 41, 5238–5244 (2002).

[Crossref]
[PubMed]

C. Cheng, Y. Lo, W. Li, C. Kuo, and H. Cheng, “Estimations of fiber Bragg grating parameters and strain gauge factor using optical spectrum and strain distribution information,” Appl. Opt. 46, 4555–4562 (2007).

[Crossref]
[PubMed]

B. Eggleton, P. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).

[Crossref]

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).

[Crossref]

Z. Zang and Y. Zhang, “Low-switching power (< 45 mw) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).

[Crossref]

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. Ny, and C. Boisrobert, “Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings,” J. Opt. A-Pure Appl. Op. 8, 775 (2006).

[Crossref]

Z. Zang, “Numerical analysis of optical bistability based on fiber Bragg grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2011).

[Crossref]

J. Azaa and M. Muriel, “Reconstructing arbitrary strain distributions within fiber gratings by timefrequency signal analysis,” Opt. Lett. 25, 698–700 (2000).

[Crossref]

M. LeBlanc, S. Huang, M. Ohn, A. Guemes, and A. Othonos, “Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis,” Opt. Lett. 21, 1405–1407 (1996).

[Crossref]
[PubMed]

F. Teng, W. Yin, F. Wu, Z. Li, and T. Wu, “Analysis of a fiber Bragg grating sensing system with transverse uniform press by using genetic algorithm,” Opto-electron. Lett. 4, 121–125 (2008).

M. Muriel and A. Carballar, “Internal field distributions in fiber Bragg gratings,” Phot. Tech. Lett. IEEE 9, 955–957 (1997).

[Crossref]

S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Sruct. 7, 248–256 (1998).

[Crossref]

J. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (John Wiley and Sons Inc, 2002).

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of International Conference on Neural Networks, ed. (IEEE, 1995), vol. 4, pp. 1942–1948.