Abstract

We report the design, fabrication and characterization of a II-VI Zn0.51Cd0.49Se / Zn0.45Cd0.42Mg0.13Se-based quantum well infrared photodetector (QWIP) with a bound to quasi-bound transition centered at 8.7 µm. The good growth quality of the epitaxial layers was verified by x-ray diffraction measurements. Absorption and photocurrent measurements yield results consistent with conventional III-V QWIPs. Photocurrent measurements reveal an exponential decrease with temperature. In addition, we also observe more than 4 orders of magnitude increase in photocurrent with applied bias. By compensating the drop in temperature performance with an increase in applied bias, we achieve an operating temperature of up to 140K and a responsivity of 1-10 µA/W.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Gunapala and S. V. Bandara, “Quantum Well Infrared Photodetector (QWIP) Focal Plane Arrays,” in Intersubband Transitions in Quantum Wells: Physics and Device Applications I, H.C. Liu, and F. Capasso, eds. (Academic Press, 2000), pp. 197–282.
  2. S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
    [CrossRef]
  3. S. Tsao, H. Lim, W. Zhang, and M. Razeghi, “High operating temperature 320x256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector,” Appl. Phys. Lett. 90(20), 201109 (2007).
    [CrossRef]
  4. H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
    [CrossRef]
  5. W. O. Charles, A. Shen, K. Franz, C. Gmachl, Q. Zhang, Y. Gong, G. F. Neumark, and M. C. Tamargo, “Growth and characterization of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se asymmetric coupled quantum well structures for quantum cascade laser applications,” J. Vac. Sci. Technol. B 26, 1171–1173 (2008).
    [CrossRef]
  6. H. Lu, A. Shen, M. C. Tamargo, C. Y. Song, H. C. Liu, S. K. Zhang, R. R. Alfano, and M. Munoz, “Midinfrared intersubband absorption in ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum well structures,” Appl. Phys. Lett. 89, 131903 (2006).
    [CrossRef]
  7. B. S. Li, A. Shen, W. O. Charles, Q. Zhang, and M. C. Tamargo, “Multiple intersubband absorption in wide band gap II-VI ZnxCd1-xSe multiple quantum wells with metastable zincblende MgSe barriers,” Appl. Phys. Lett. 92(26), 261104 (2008).
    [CrossRef]
  8. A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
    [CrossRef]
  9. K. J. Franz, W. O. Charles, A. Shen, A. J. Hoffman, M. C. Tamargo, and C. Gmachl, “ZnCdSe/ZnCdMgSe quantum cascade electroluminescence,” Appl. Phys. Lett. 92(12), 121105 (2008).
    [CrossRef]
  10. Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
    [CrossRef]
  11. M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Muñoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 23(3), 1209–1211 (2005).
    [CrossRef]
  12. O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, “Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe,” Phys. Rev. B Condens. Matter 50(15), 10780–10787 (1994).
    [CrossRef] [PubMed]
  13. C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B Condens. Matter 50(12), 8663–8674 (1994).
    [CrossRef] [PubMed]
  14. H. C. Liu, Z. R. Wasilewski, M. Buchanan, and H. Chu, “Segregation of Si δ doping in GaAs-AlGaAs quantum wells and the cause of the asymmetry in the current-voltage characteristics of intersubband infrared detectors,” Appl. Phys. Lett. 63(6), 761–763 (1993).
    [CrossRef]
  15. E. C. Larkins, H. Schneider, S. Ehret, J. Fleißner, B. Dischler, P. Koidl, and J. D. Ralston, “Influences of MBE growth processes on photovoltaic 3-5 µm intersubband photodetectors,” IEEE Trans. Electron. Dev. 41(4), 511–518 (1994).
    [CrossRef]
  16. Z. R. Wasilewski, H. C. Liu, and M. Buchanan, “Studies of Si segregation in GaAs using current-voltage characteristics of quantum well infrared photodetectors,” J. Vac. Sci. Technol. B 12(2), 1273–1276 (1994).
    [CrossRef]
  17. E. Kim, A. Madhukar, Z. Ye, and J. C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 84(17), 3277–3279 (2004).
    [CrossRef]
  18. Z. Ye, J. C. Campbell, Z. Chen, E. Kim, and A. Madhukar, “InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers,” J. Appl. Phys. 92(12), 7462–7468 (2002).
    [CrossRef]
  19. M. Ershov, H. C. Liu, M. Buchanan, Z. R. Wasilewski, and V. Ryzhii, “Photoconductivity nonlinearity at high excitation power in quantum well infrared photodetectors,” Appl. Phys. Lett. 70(4), 414–416 (1997).
    [CrossRef]

2011 (1)

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[CrossRef]

2008 (3)

W. O. Charles, A. Shen, K. Franz, C. Gmachl, Q. Zhang, Y. Gong, G. F. Neumark, and M. C. Tamargo, “Growth and characterization of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se asymmetric coupled quantum well structures for quantum cascade laser applications,” J. Vac. Sci. Technol. B 26, 1171–1173 (2008).
[CrossRef]

B. S. Li, A. Shen, W. O. Charles, Q. Zhang, and M. C. Tamargo, “Multiple intersubband absorption in wide band gap II-VI ZnxCd1-xSe multiple quantum wells with metastable zincblende MgSe barriers,” Appl. Phys. Lett. 92(26), 261104 (2008).
[CrossRef]

K. J. Franz, W. O. Charles, A. Shen, A. J. Hoffman, M. C. Tamargo, and C. Gmachl, “ZnCdSe/ZnCdMgSe quantum cascade electroluminescence,” Appl. Phys. Lett. 92(12), 121105 (2008).
[CrossRef]

2007 (3)

A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
[CrossRef]

S. Tsao, H. Lim, W. Zhang, and M. Razeghi, “High operating temperature 320x256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector,” Appl. Phys. Lett. 90(20), 201109 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

2006 (1)

H. Lu, A. Shen, M. C. Tamargo, C. Y. Song, H. C. Liu, S. K. Zhang, R. R. Alfano, and M. Munoz, “Midinfrared intersubband absorption in ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum well structures,” Appl. Phys. Lett. 89, 131903 (2006).
[CrossRef]

2005 (2)

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Muñoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 23(3), 1209–1211 (2005).
[CrossRef]

2004 (1)

E. Kim, A. Madhukar, Z. Ye, and J. C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 84(17), 3277–3279 (2004).
[CrossRef]

2002 (1)

Z. Ye, J. C. Campbell, Z. Chen, E. Kim, and A. Madhukar, “InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers,” J. Appl. Phys. 92(12), 7462–7468 (2002).
[CrossRef]

1997 (1)

M. Ershov, H. C. Liu, M. Buchanan, Z. R. Wasilewski, and V. Ryzhii, “Photoconductivity nonlinearity at high excitation power in quantum well infrared photodetectors,” Appl. Phys. Lett. 70(4), 414–416 (1997).
[CrossRef]

1994 (4)

E. C. Larkins, H. Schneider, S. Ehret, J. Fleißner, B. Dischler, P. Koidl, and J. D. Ralston, “Influences of MBE growth processes on photovoltaic 3-5 µm intersubband photodetectors,” IEEE Trans. Electron. Dev. 41(4), 511–518 (1994).
[CrossRef]

Z. R. Wasilewski, H. C. Liu, and M. Buchanan, “Studies of Si segregation in GaAs using current-voltage characteristics of quantum well infrared photodetectors,” J. Vac. Sci. Technol. B 12(2), 1273–1276 (1994).
[CrossRef]

O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, “Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe,” Phys. Rev. B Condens. Matter 50(15), 10780–10787 (1994).
[CrossRef] [PubMed]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B Condens. Matter 50(12), 8663–8674 (1994).
[CrossRef] [PubMed]

1993 (1)

H. C. Liu, Z. R. Wasilewski, M. Buchanan, and H. Chu, “Segregation of Si δ doping in GaAs-AlGaAs quantum wells and the cause of the asymmetry in the current-voltage characteristics of intersubband infrared detectors,” Appl. Phys. Lett. 63(6), 761–763 (1993).
[CrossRef]

Alfano, R. R.

A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, C. Y. Song, H. C. Liu, S. K. Zhang, R. R. Alfano, and M. Munoz, “Midinfrared intersubband absorption in ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum well structures,” Appl. Phys. Lett. 89, 131903 (2006).
[CrossRef]

Alfaro-Martinez, A.

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[CrossRef]

Annamalai, S.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Blase, X.

O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, “Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe,” Phys. Rev. B Condens. Matter 50(15), 10780–10787 (1994).
[CrossRef] [PubMed]

Buchanan, M.

M. Ershov, H. C. Liu, M. Buchanan, Z. R. Wasilewski, and V. Ryzhii, “Photoconductivity nonlinearity at high excitation power in quantum well infrared photodetectors,” Appl. Phys. Lett. 70(4), 414–416 (1997).
[CrossRef]

Z. R. Wasilewski, H. C. Liu, and M. Buchanan, “Studies of Si segregation in GaAs using current-voltage characteristics of quantum well infrared photodetectors,” J. Vac. Sci. Technol. B 12(2), 1273–1276 (1994).
[CrossRef]

H. C. Liu, Z. R. Wasilewski, M. Buchanan, and H. Chu, “Segregation of Si δ doping in GaAs-AlGaAs quantum wells and the cause of the asymmetry in the current-voltage characteristics of intersubband infrared detectors,” Appl. Phys. Lett. 63(6), 761–763 (1993).
[CrossRef]

Campbell, J.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Campbell, J. C.

E. Kim, A. Madhukar, Z. Ye, and J. C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 84(17), 3277–3279 (2004).
[CrossRef]

Z. Ye, J. C. Campbell, Z. Chen, E. Kim, and A. Madhukar, “InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers,” J. Appl. Phys. 92(12), 7462–7468 (2002).
[CrossRef]

Capasso, F.

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B Condens. Matter 50(12), 8663–8674 (1994).
[CrossRef] [PubMed]

Carothers, D.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Charles, W.

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
[CrossRef]

Charles, W. O.

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[CrossRef]

K. J. Franz, W. O. Charles, A. Shen, A. J. Hoffman, M. C. Tamargo, and C. Gmachl, “ZnCdSe/ZnCdMgSe quantum cascade electroluminescence,” Appl. Phys. Lett. 92(12), 121105 (2008).
[CrossRef]

B. S. Li, A. Shen, W. O. Charles, Q. Zhang, and M. C. Tamargo, “Multiple intersubband absorption in wide band gap II-VI ZnxCd1-xSe multiple quantum wells with metastable zincblende MgSe barriers,” Appl. Phys. Lett. 92(26), 261104 (2008).
[CrossRef]

W. O. Charles, A. Shen, K. Franz, C. Gmachl, Q. Zhang, Y. Gong, G. F. Neumark, and M. C. Tamargo, “Growth and characterization of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se asymmetric coupled quantum well structures for quantum cascade laser applications,” J. Vac. Sci. Technol. B 26, 1171–1173 (2008).
[CrossRef]

Chen, Z.

Z. Ye, J. C. Campbell, Z. Chen, E. Kim, and A. Madhukar, “InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers,” J. Appl. Phys. 92(12), 7462–7468 (2002).
[CrossRef]

Chu, H.

H. C. Liu, Z. R. Wasilewski, M. Buchanan, and H. Chu, “Segregation of Si δ doping in GaAs-AlGaAs quantum wells and the cause of the asymmetry in the current-voltage characteristics of intersubband infrared detectors,” Appl. Phys. Lett. 63(6), 761–763 (1993).
[CrossRef]

Cohen, M. L.

O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, “Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe,” Phys. Rev. B Condens. Matter 50(15), 10780–10787 (1994).
[CrossRef] [PubMed]

Dischler, B.

E. C. Larkins, H. Schneider, S. Ehret, J. Fleißner, B. Dischler, P. Koidl, and J. D. Ralston, “Influences of MBE growth processes on photovoltaic 3-5 µm intersubband photodetectors,” IEEE Trans. Electron. Dev. 41(4), 511–518 (1994).
[CrossRef]

Dowd, P.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Ehret, S.

E. C. Larkins, H. Schneider, S. Ehret, J. Fleißner, B. Dischler, P. Koidl, and J. D. Ralston, “Influences of MBE growth processes on photovoltaic 3-5 µm intersubband photodetectors,” IEEE Trans. Electron. Dev. 41(4), 511–518 (1994).
[CrossRef]

Ershov, M.

M. Ershov, H. C. Liu, M. Buchanan, Z. R. Wasilewski, and V. Ryzhii, “Photoconductivity nonlinearity at high excitation power in quantum well infrared photodetectors,” Appl. Phys. Lett. 70(4), 414–416 (1997).
[CrossRef]

Faist, J.

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B Condens. Matter 50(12), 8663–8674 (1994).
[CrossRef] [PubMed]

Fleißner, J.

E. C. Larkins, H. Schneider, S. Ehret, J. Fleißner, B. Dischler, P. Koidl, and J. D. Ralston, “Influences of MBE growth processes on photovoltaic 3-5 µm intersubband photodetectors,” IEEE Trans. Electron. Dev. 41(4), 511–518 (1994).
[CrossRef]

Forman, D.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Franz, K.

W. O. Charles, A. Shen, K. Franz, C. Gmachl, Q. Zhang, Y. Gong, G. F. Neumark, and M. C. Tamargo, “Growth and characterization of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se asymmetric coupled quantum well structures for quantum cascade laser applications,” J. Vac. Sci. Technol. B 26, 1171–1173 (2008).
[CrossRef]

Franz, K. J.

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[CrossRef]

K. J. Franz, W. O. Charles, A. Shen, A. J. Hoffman, M. C. Tamargo, and C. Gmachl, “ZnCdSe/ZnCdMgSe quantum cascade electroluminescence,” Appl. Phys. Lett. 92(12), 121105 (2008).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
[CrossRef]

Gmachl, C.

W. O. Charles, A. Shen, K. Franz, C. Gmachl, Q. Zhang, Y. Gong, G. F. Neumark, and M. C. Tamargo, “Growth and characterization of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se asymmetric coupled quantum well structures for quantum cascade laser applications,” J. Vac. Sci. Technol. B 26, 1171–1173 (2008).
[CrossRef]

K. J. Franz, W. O. Charles, A. Shen, A. J. Hoffman, M. C. Tamargo, and C. Gmachl, “ZnCdSe/ZnCdMgSe quantum cascade electroluminescence,” Appl. Phys. Lett. 92(12), 121105 (2008).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
[CrossRef]

Gmachl, C. F.

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[CrossRef]

Gong, Y.

W. O. Charles, A. Shen, K. Franz, C. Gmachl, Q. Zhang, Y. Gong, G. F. Neumark, and M. C. Tamargo, “Growth and characterization of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se asymmetric coupled quantum well structures for quantum cascade laser applications,” J. Vac. Sci. Technol. B 26, 1171–1173 (2008).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

Gray, A.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Hoffman, A. J.

K. J. Franz, W. O. Charles, A. Shen, A. J. Hoffman, M. C. Tamargo, and C. Gmachl, “ZnCdSe/ZnCdMgSe quantum cascade electroluminescence,” Appl. Phys. Lett. 92(12), 121105 (2008).
[CrossRef]

Kim, E.

E. Kim, A. Madhukar, Z. Ye, and J. C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 84(17), 3277–3279 (2004).
[CrossRef]

Z. Ye, J. C. Campbell, Z. Chen, E. Kim, and A. Madhukar, “InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers,” J. Appl. Phys. 92(12), 7462–7468 (2002).
[CrossRef]

Koidl, P.

E. C. Larkins, H. Schneider, S. Ehret, J. Fleißner, B. Dischler, P. Koidl, and J. D. Ralston, “Influences of MBE growth processes on photovoltaic 3-5 µm intersubband photodetectors,” IEEE Trans. Electron. Dev. 41(4), 511–518 (1994).
[CrossRef]

Krishna, S.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Larkins, E. C.

E. C. Larkins, H. Schneider, S. Ehret, J. Fleißner, B. Dischler, P. Koidl, and J. D. Ralston, “Influences of MBE growth processes on photovoltaic 3-5 µm intersubband photodetectors,” IEEE Trans. Electron. Dev. 41(4), 511–518 (1994).
[CrossRef]

Li, B. S.

B. S. Li, A. Shen, W. O. Charles, Q. Zhang, and M. C. Tamargo, “Multiple intersubband absorption in wide band gap II-VI ZnxCd1-xSe multiple quantum wells with metastable zincblende MgSe barriers,” Appl. Phys. Lett. 92(26), 261104 (2008).
[CrossRef]

Lim, H.

S. Tsao, H. Lim, W. Zhang, and M. Razeghi, “High operating temperature 320x256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector,” Appl. Phys. Lett. 90(20), 201109 (2007).
[CrossRef]

Liu, H. C.

A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, C. Y. Song, H. C. Liu, S. K. Zhang, R. R. Alfano, and M. Munoz, “Midinfrared intersubband absorption in ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum well structures,” Appl. Phys. Lett. 89, 131903 (2006).
[CrossRef]

M. Ershov, H. C. Liu, M. Buchanan, Z. R. Wasilewski, and V. Ryzhii, “Photoconductivity nonlinearity at high excitation power in quantum well infrared photodetectors,” Appl. Phys. Lett. 70(4), 414–416 (1997).
[CrossRef]

Z. R. Wasilewski, H. C. Liu, and M. Buchanan, “Studies of Si segregation in GaAs using current-voltage characteristics of quantum well infrared photodetectors,” J. Vac. Sci. Technol. B 12(2), 1273–1276 (1994).
[CrossRef]

H. C. Liu, Z. R. Wasilewski, M. Buchanan, and H. Chu, “Segregation of Si δ doping in GaAs-AlGaAs quantum wells and the cause of the asymmetry in the current-voltage characteristics of intersubband infrared detectors,” Appl. Phys. Lett. 63(6), 761–763 (1993).
[CrossRef]

Liu, M.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Louie, S. G.

O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, “Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe,” Phys. Rev. B Condens. Matter 50(15), 10780–10787 (1994).
[CrossRef] [PubMed]

Lu, H.

A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, C. Y. Song, H. C. Liu, S. K. Zhang, R. R. Alfano, and M. Munoz, “Midinfrared intersubband absorption in ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum well structures,” Appl. Phys. Lett. 89, 131903 (2006).
[CrossRef]

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Muñoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 23(3), 1209–1211 (2005).
[CrossRef]

Madhukar, A.

E. Kim, A. Madhukar, Z. Ye, and J. C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 84(17), 3277–3279 (2004).
[CrossRef]

Z. Ye, J. C. Campbell, Z. Chen, E. Kim, and A. Madhukar, “InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers,” J. Appl. Phys. 92(12), 7462–7468 (2002).
[CrossRef]

Munoz, M.

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, C. Y. Song, H. C. Liu, S. K. Zhang, R. R. Alfano, and M. Munoz, “Midinfrared intersubband absorption in ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum well structures,” Appl. Phys. Lett. 89, 131903 (2006).
[CrossRef]

Muñoz, M.

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Muñoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 23(3), 1209–1211 (2005).
[CrossRef]

Neumark, G. F.

W. O. Charles, A. Shen, K. Franz, C. Gmachl, Q. Zhang, Y. Gong, G. F. Neumark, and M. C. Tamargo, “Growth and characterization of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se asymmetric coupled quantum well structures for quantum cascade laser applications,” J. Vac. Sci. Technol. B 26, 1171–1173 (2008).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

Perez-Paz, M. N.

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Muñoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 23(3), 1209–1211 (2005).
[CrossRef]

Ralston, J. D.

E. C. Larkins, H. Schneider, S. Ehret, J. Fleißner, B. Dischler, P. Koidl, and J. D. Ralston, “Influences of MBE growth processes on photovoltaic 3-5 µm intersubband photodetectors,” IEEE Trans. Electron. Dev. 41(4), 511–518 (1994).
[CrossRef]

Razeghi, M.

S. Tsao, H. Lim, W. Zhang, and M. Razeghi, “High operating temperature 320x256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector,” Appl. Phys. Lett. 90(20), 201109 (2007).
[CrossRef]

Rubio, A.

O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, “Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe,” Phys. Rev. B Condens. Matter 50(15), 10780–10787 (1994).
[CrossRef] [PubMed]

Ryzhii, V.

M. Ershov, H. C. Liu, M. Buchanan, Z. R. Wasilewski, and V. Ryzhii, “Photoconductivity nonlinearity at high excitation power in quantum well infrared photodetectors,” Appl. Phys. Lett. 70(4), 414–416 (1997).
[CrossRef]

Scandolo, S.

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B Condens. Matter 50(12), 8663–8674 (1994).
[CrossRef] [PubMed]

Schneider, H.

E. C. Larkins, H. Schneider, S. Ehret, J. Fleißner, B. Dischler, P. Koidl, and J. D. Ralston, “Influences of MBE growth processes on photovoltaic 3-5 µm intersubband photodetectors,” IEEE Trans. Electron. Dev. 41(4), 511–518 (1994).
[CrossRef]

Shen, A.

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[CrossRef]

K. J. Franz, W. O. Charles, A. Shen, A. J. Hoffman, M. C. Tamargo, and C. Gmachl, “ZnCdSe/ZnCdMgSe quantum cascade electroluminescence,” Appl. Phys. Lett. 92(12), 121105 (2008).
[CrossRef]

B. S. Li, A. Shen, W. O. Charles, Q. Zhang, and M. C. Tamargo, “Multiple intersubband absorption in wide band gap II-VI ZnxCd1-xSe multiple quantum wells with metastable zincblende MgSe barriers,” Appl. Phys. Lett. 92(26), 261104 (2008).
[CrossRef]

W. O. Charles, A. Shen, K. Franz, C. Gmachl, Q. Zhang, Y. Gong, G. F. Neumark, and M. C. Tamargo, “Growth and characterization of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se asymmetric coupled quantum well structures for quantum cascade laser applications,” J. Vac. Sci. Technol. B 26, 1171–1173 (2008).
[CrossRef]

A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, C. Y. Song, H. C. Liu, S. K. Zhang, R. R. Alfano, and M. Munoz, “Midinfrared intersubband absorption in ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum well structures,” Appl. Phys. Lett. 89, 131903 (2006).
[CrossRef]

Sirtori, C.

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B Condens. Matter 50(12), 8663–8674 (1994).
[CrossRef] [PubMed]

Sohel, M.

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Muñoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 23(3), 1209–1211 (2005).
[CrossRef]

Song, C. Y.

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, C. Y. Song, H. C. Liu, S. K. Zhang, R. R. Alfano, and M. Munoz, “Midinfrared intersubband absorption in ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum well structures,” Appl. Phys. Lett. 89, 131903 (2006).
[CrossRef]

Sun, K.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Tamargo, M.

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Muñoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 23(3), 1209–1211 (2005).
[CrossRef]

Tamargo, M. C.

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[CrossRef]

K. J. Franz, W. O. Charles, A. Shen, A. J. Hoffman, M. C. Tamargo, and C. Gmachl, “ZnCdSe/ZnCdMgSe quantum cascade electroluminescence,” Appl. Phys. Lett. 92(12), 121105 (2008).
[CrossRef]

W. O. Charles, A. Shen, K. Franz, C. Gmachl, Q. Zhang, Y. Gong, G. F. Neumark, and M. C. Tamargo, “Growth and characterization of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se asymmetric coupled quantum well structures for quantum cascade laser applications,” J. Vac. Sci. Technol. B 26, 1171–1173 (2008).
[CrossRef]

B. S. Li, A. Shen, W. O. Charles, Q. Zhang, and M. C. Tamargo, “Multiple intersubband absorption in wide band gap II-VI ZnxCd1-xSe multiple quantum wells with metastable zincblende MgSe barriers,” Appl. Phys. Lett. 92(26), 261104 (2008).
[CrossRef]

A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, C. Y. Song, H. C. Liu, S. K. Zhang, R. R. Alfano, and M. Munoz, “Midinfrared intersubband absorption in ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum well structures,” Appl. Phys. Lett. 89, 131903 (2006).
[CrossRef]

Tsao, S.

S. Tsao, H. Lim, W. Zhang, and M. Razeghi, “High operating temperature 320x256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector,” Appl. Phys. Lett. 90(20), 201109 (2007).
[CrossRef]

Tumolillo, T.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Varangis, P.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Wasilewski, Z. R.

M. Ershov, H. C. Liu, M. Buchanan, Z. R. Wasilewski, and V. Ryzhii, “Photoconductivity nonlinearity at high excitation power in quantum well infrared photodetectors,” Appl. Phys. Lett. 70(4), 414–416 (1997).
[CrossRef]

Z. R. Wasilewski, H. C. Liu, and M. Buchanan, “Studies of Si segregation in GaAs using current-voltage characteristics of quantum well infrared photodetectors,” J. Vac. Sci. Technol. B 12(2), 1273–1276 (1994).
[CrossRef]

H. C. Liu, Z. R. Wasilewski, M. Buchanan, and H. Chu, “Segregation of Si δ doping in GaAs-AlGaAs quantum wells and the cause of the asymmetry in the current-voltage characteristics of intersubband infrared detectors,” Appl. Phys. Lett. 63(6), 761–763 (1993).
[CrossRef]

Yao, Y.

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[CrossRef]

Ye, Z.

E. Kim, A. Madhukar, Z. Ye, and J. C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 84(17), 3277–3279 (2004).
[CrossRef]

Z. Ye, J. C. Campbell, Z. Chen, E. Kim, and A. Madhukar, “InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers,” J. Appl. Phys. 92(12), 7462–7468 (2002).
[CrossRef]

Yokomizo, I.

A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

Zakharov, O.

O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, “Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe,” Phys. Rev. B Condens. Matter 50(15), 10780–10787 (1994).
[CrossRef] [PubMed]

Zhang, Q.

B. S. Li, A. Shen, W. O. Charles, Q. Zhang, and M. C. Tamargo, “Multiple intersubband absorption in wide band gap II-VI ZnxCd1-xSe multiple quantum wells with metastable zincblende MgSe barriers,” Appl. Phys. Lett. 92(26), 261104 (2008).
[CrossRef]

W. O. Charles, A. Shen, K. Franz, C. Gmachl, Q. Zhang, Y. Gong, G. F. Neumark, and M. C. Tamargo, “Growth and characterization of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se asymmetric coupled quantum well structures for quantum cascade laser applications,” J. Vac. Sci. Technol. B 26, 1171–1173 (2008).
[CrossRef]

Zhang, S. K.

A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, C. Y. Song, H. C. Liu, S. K. Zhang, R. R. Alfano, and M. Munoz, “Midinfrared intersubband absorption in ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum well structures,” Appl. Phys. Lett. 89, 131903 (2006).
[CrossRef]

Zhang, W.

S. Tsao, H. Lim, W. Zhang, and M. Razeghi, “High operating temperature 320x256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector,” Appl. Phys. Lett. 90(20), 201109 (2007).
[CrossRef]

Zhou, X.

A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
[CrossRef]

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Muñoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 23(3), 1209–1211 (2005).
[CrossRef]

Zilko, J.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Appl. Phys. Lett. (10)

H. Lu, A. Shen, M. C. Tamargo, C. Y. Song, H. C. Liu, S. K. Zhang, R. R. Alfano, and M. Munoz, “Midinfrared intersubband absorption in ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum well structures,” Appl. Phys. Lett. 89, 131903 (2006).
[CrossRef]

B. S. Li, A. Shen, W. O. Charles, Q. Zhang, and M. C. Tamargo, “Multiple intersubband absorption in wide band gap II-VI ZnxCd1-xSe multiple quantum wells with metastable zincblende MgSe barriers,” Appl. Phys. Lett. 92(26), 261104 (2008).
[CrossRef]

A. Shen, H. Lu, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, S. K. Zhang, X. Zhou, R. R. Alfano, and H. C. Liu, “Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers,” Appl. Phys. Lett. 90(7), 071910 (2007).
[CrossRef]

K. J. Franz, W. O. Charles, A. Shen, A. J. Hoffman, M. C. Tamargo, and C. Gmachl, “ZnCdSe/ZnCdMgSe quantum cascade electroluminescence,” Appl. Phys. Lett. 92(12), 121105 (2008).
[CrossRef]

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[CrossRef]

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

S. Tsao, H. Lim, W. Zhang, and M. Razeghi, “High operating temperature 320x256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector,” Appl. Phys. Lett. 90(20), 201109 (2007).
[CrossRef]

H. C. Liu, Z. R. Wasilewski, M. Buchanan, and H. Chu, “Segregation of Si δ doping in GaAs-AlGaAs quantum wells and the cause of the asymmetry in the current-voltage characteristics of intersubband infrared detectors,” Appl. Phys. Lett. 63(6), 761–763 (1993).
[CrossRef]

E. Kim, A. Madhukar, Z. Ye, and J. C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 84(17), 3277–3279 (2004).
[CrossRef]

M. Ershov, H. C. Liu, M. Buchanan, Z. R. Wasilewski, and V. Ryzhii, “Photoconductivity nonlinearity at high excitation power in quantum well infrared photodetectors,” Appl. Phys. Lett. 70(4), 414–416 (1997).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

E. C. Larkins, H. Schneider, S. Ehret, J. Fleißner, B. Dischler, P. Koidl, and J. D. Ralston, “Influences of MBE growth processes on photovoltaic 3-5 µm intersubband photodetectors,” IEEE Trans. Electron. Dev. 41(4), 511–518 (1994).
[CrossRef]

J. Appl. Phys. (1)

Z. Ye, J. C. Campbell, Z. Chen, E. Kim, and A. Madhukar, “InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers,” J. Appl. Phys. 92(12), 7462–7468 (2002).
[CrossRef]

J. Vac. Sci. Technol. B (4)

Z. R. Wasilewski, H. C. Liu, and M. Buchanan, “Studies of Si segregation in GaAs using current-voltage characteristics of quantum well infrared photodetectors,” J. Vac. Sci. Technol. B 12(2), 1273–1276 (1994).
[CrossRef]

H. Lu, A. Shen, M. C. Tamargo, W. Charles, I. Yokomizo, M. Munoz, Y. Gong, G. F. Neumark, K. J. Franz, C. Gmachl, C. Y. Song, and H. C. Liu, “Study of intersubband transitions of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se multiple quantum wells grown by molecular beam epitaxy for midinfrared device applications,” J. Vac. Sci. Technol. B 25, 1103–1107 (2007).
[CrossRef]

W. O. Charles, A. Shen, K. Franz, C. Gmachl, Q. Zhang, Y. Gong, G. F. Neumark, and M. C. Tamargo, “Growth and characterization of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se asymmetric coupled quantum well structures for quantum cascade laser applications,” J. Vac. Sci. Technol. B 26, 1171–1173 (2008).
[CrossRef]

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Muñoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 23(3), 1209–1211 (2005).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, “Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe,” Phys. Rev. B Condens. Matter 50(15), 10780–10787 (1994).
[CrossRef] [PubMed]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B Condens. Matter 50(12), 8663–8674 (1994).
[CrossRef] [PubMed]

Other (1)

S. D. Gunapala and S. V. Bandara, “Quantum Well Infrared Photodetector (QWIP) Focal Plane Arrays,” in Intersubband Transitions in Quantum Wells: Physics and Device Applications I, H.C. Liu, and F. Capasso, eds. (Academic Press, 2000), pp. 197–282.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

X-ray diffraction (XRD) data measured from the QWIP structure prior to processing. The clearly differentiated satellite peaks indicate good structural quality of the sample. The thickness of a single period of ZnCdSe/ZnCdMgSe was computed to be 201Å, corresponding to a 5% deviation from the design period of 191 Å. (Inset) Optical image (top-view) of the QWIP used in the measurements: the device dimensions are 310 x 485 µm., while the window measures 300 x 300 µm.

Fig. 2
Fig. 2

Normalized absorbance of an unbiased wafer at room temperature (blue line) and photocurrent spectrum (red triangles) of a −2 V biased QWIP at 78 K. The shift in wavelength is attributed to the different temperature and bias employed in the photocurrent measurements. (Inset) A schematic of the quantum well design with the associated transitions and energy levels.

Fig. 3
Fig. 3

(a) Dark current characteristics of the QWIP as a function of temperature from 80 K to 280 K. (b) Logarithmic plot of the dark current as a function of inverse temperature, at different applied bias. The slope of the plot gives an estimate of the activation energy, which in the case of −3V (blue triangles), −2V (red circles) and −1V (black squares) is 72 meV, 80.5 meV and 81 meV, respectively.

Fig. 4
Fig. 4

(a) Narrowband photocurrent spectra taken at 78K near the peak absorption wavelength using a tunable Daylight Solutions Inc. laser as a function of applied bias. Note the four orders of magnitude change in photocurrent with bias. (b) Logarithmic plot of photocurrent at 1085 cm−1 indicating an exponential decay with temperature. (c) Responsivity measured at 78K and 1085 cm−1 as a function of applied bias – notice the asymmetric behavior as seen in the dark current curves in Fig. 2 at low temperature. In addition, we also observe a four orders of magnitude change in photocurrent and responsivity between 0 and −3 V applied bias. (d) Photocurrent spectra at temperatures between 80K and 140K, taken by compensating degrading temperature performance with applied bias.

Fig. 5
Fig. 5

(a) Photocurrent measurement, taken at 1085cm−1 near the peak absorption wavelength, as a function of laser power, indicating saturation at higher power. (b) Photocurrent as a function of polarization angle, with a TM/TE rejection ratio of over 100, confirming intersubband absorption over thermal effects.

Metrics