Abstract

Digital inline holographic microscopy using a pinhole for sample illumination allows lensless imaging. To overcome restrictions of the sample size and density in the setup additional reference waves are generated by extending the single pinhole to a regular 2D pinhole array illumination. A technique is presented that uses phase shifting between the pinhole waves. Multiple foci with stable phase differences and a phase error (rms) of 0.027 rad generate pinhole waves which illuminate an undiluted, dense blood smear sample. Amplitude and phase images of the blood sample were sucessfully reconstructed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London Ser. A 197, 454–487 (1949).
    [CrossRef]
  2. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367–5375 (2002).
    [CrossRef] [PubMed]
  3. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31, 1211–1213 (2006).
    [CrossRef] [PubMed]
  4. M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
    [CrossRef] [PubMed]
  5. V. Micó and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging,” J. Biomed. Optics 15, 046027 (2010).
    [CrossRef]
  6. M. Kanka, R. Riesenberg, P. Petruck, and C. Graulig, “High resolution (NA=0.8) in lensless in-line holographic microscopy with glass sample carriers,” Opt. Lett. 36, 3651–3653 (2011).
    [CrossRef] [PubMed]
  7. M. H. Jericho, H. J. Kreuzer, M. Kanka, and R. Riesenberg, “Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy,” Appl. Opt. 51, 1503–1515 (2012).
    [CrossRef] [PubMed]
  8. Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11, 3234–3241 (2003).
    [CrossRef] [PubMed]
  9. A. Greenbaum and A. Ozcan, “Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy,” Opt. Express 20, 3129–3143 (2012).
    [CrossRef] [PubMed]
  10. E. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964).
    [CrossRef]
  11. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [CrossRef]
  12. N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
    [CrossRef] [PubMed]
  13. A. Jesacher, W. Harm, S. Bernet, and M. Ritsch-Marte, “Quantitative single-shot imaging of complex objects using phase retrieval with a designed periphery,” Opt. Express 20, 5470–5480 (2012).
    [CrossRef] [PubMed]
  14. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef] [PubMed]
  15. I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16, 16711–16722 (2008).
    [CrossRef] [PubMed]
  16. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227–246 (1972).
  17. H. Akahori, “Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform,” Appl. Opt. 25, 802–811 (1986).
    [CrossRef] [PubMed]
  18. F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54, 1481– 1571 (1991).
    [CrossRef]
  19. H. Kim, B. Yang, and B. Lee, “Iterative fourier transform algorithm with regularization for the optimal design of diffractive optical elements,” J. Opt. Soc. Am. A 21, 2353–2365 (2004).
    [CrossRef]
  20. A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A Pure Appl. Opt. 10, 035302 (2008).
    [CrossRef]
  21. D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Grid-free 3d multiple spot generation with an efficient single-plane fft-based algorithm,” Opt. Express 17, 9989–10000 (2009).
    [CrossRef] [PubMed]
  22. A. Georgiou, “Noise formation in fourier phase-only holograms,” J. Opt. Soc. Am. B 27, 2677–2686 (2010).
    [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, USA, 1996).
  24. R. Riesenberg, M. Kanka, and J. Bergmann, “Coherent light microscopy with a multi-spot source,” T. Wilson ed., Proc. SPIE6630, 66300I (2007).
    [CrossRef]
  25. C. Graulig and R. Riesenberg, “Lens-less imaging of pollen grains,” in Proceedings of AMA OPTO 2008, 109– 114 (2008).

2012 (3)

2011 (1)

2010 (3)

2009 (2)

2008 (3)

I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16, 16711–16722 (2008).
[CrossRef] [PubMed]

C. Graulig and R. Riesenberg, “Lens-less imaging of pollen grains,” in Proceedings of AMA OPTO 2008, 109– 114 (2008).

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A Pure Appl. Opt. 10, 035302 (2008).
[CrossRef]

2006 (1)

2004 (1)

2003 (1)

2002 (1)

2000 (1)

1997 (1)

1991 (1)

F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54, 1481– 1571 (1991).
[CrossRef]

1986 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227–246 (1972).

1964 (1)

1949 (1)

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London Ser. A 197, 454–487 (1949).
[CrossRef]

Akahori, H.

Arfire, C.

Backsten, J.

Bengtsson, J.

Bergmann, J.

R. Riesenberg, M. Kanka, and J. Bergmann, “Coherent light microscopy with a multi-spot source,” T. Wilson ed., Proc. SPIE6630, 66300I (2007).
[CrossRef]

Bergoënd, I.

Bernet, S.

Bryngdahl, O.

F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54, 1481– 1571 (1991).
[CrossRef]

Campos, J.

Christmas, J.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A Pure Appl. Opt. 10, 035302 (2008).
[CrossRef]

Collings, N.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A Pure Appl. Opt. 10, 035302 (2008).
[CrossRef]

Crossland, W. A.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A Pure Appl. Opt. 10, 035302 (2008).
[CrossRef]

Cuche, E.

Depeursinge, C.

Engström, D.

Fernández, E.

Ferraro, P.

Frank, A.

Gabor, D.

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London Ser. A 197, 454–487 (1949).
[CrossRef]

Garcia-Sucerquia, J.

Georgiou, A.

A. Georgiou, “Noise formation in fourier phase-only holograms,” J. Opt. Soc. Am. B 27, 2677–2686 (2010).
[CrossRef]

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A Pure Appl. Opt. 10, 035302 (2008).
[CrossRef]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227–246 (1972).

Goksör, M.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, USA, 1996).

Graulig, C.

Greenbaum, A.

Harm, W.

Iemmi, C.

Jericho, M. H.

Jesacher, A.

Kanka, M.

Kim, H.

Kreuzer, H. J.

Lee, B.

Leith, E.

Lizana, A.

Marquet, P.

Márquez, A.

Meinertzhagen, I. A.

Micó, V.

V. Micó and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging,” J. Biomed. Optics 15, 046027 (2010).
[CrossRef]

Moore, J.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A Pure Appl. Opt. 10, 035302 (2008).
[CrossRef]

Moreno, I.

Osten, W.

Ozcan, A.

Paturzo, M.

Pavillon, N.

Pedrini, G.

Petruck, P.

Riesenberg, R.

Ritsch-Marte, M.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227–246 (1972).

Tiziani, H.

Upatnieks, J.

Wyrowski, F.

F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54, 1481– 1571 (1991).
[CrossRef]

Xu, W.

Yamaguchi, I.

Yang, B.

Yzuel, M. J.

Zalevsky, Z.

V. Micó and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging,” J. Biomed. Optics 15, 046027 (2010).
[CrossRef]

Zhang, T.

Zhang, Y.

Appl. Opt. (4)

J. Biomed. Optics (1)

V. Micó and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging,” J. Biomed. Optics 15, 046027 (2010).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A Pure Appl. Opt. 10, 035302 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Opt. Lett. (4)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227–246 (1972).

Proc. R. Soc. London Ser. A (1)

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London Ser. A 197, 454–487 (1949).
[CrossRef]

Proceedings of AMA OPTO 2008 (1)

C. Graulig and R. Riesenberg, “Lens-less imaging of pollen grains,” in Proceedings of AMA OPTO 2008, 109– 114 (2008).

Rep. Prog. Phys. (1)

F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54, 1481– 1571 (1991).
[CrossRef]

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, USA, 1996).

R. Riesenberg, M. Kanka, and J. Bergmann, “Coherent light microscopy with a multi-spot source,” T. Wilson ed., Proc. SPIE6630, 66300I (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup; light from the optical fiber passes the beam splitter cube (BSC) and the Fourier lens (L). The SLM reflects the light and diffracts it into multiple spots on the pinholes of a pinhole array with a low NA of 0.1. The pinholes diffract the spots into nearly spherical waves with a increased NA of 0.2. Stray light is suppressed by an aperture (A).

Fig. 2
Fig. 2

Generation of a 2×2 spot array; (a) Section of the phase pattern on the SLM and (b) the simulated resulting spot pattern of 2×2 spots with 240μm distance in an area Ω of 1mm×1 mm; Note that the intensity scale in (b) was limited to 10% of the maximum spot intensity to make the noise spots visible.

Fig. 3
Fig. 3

Analysis of the phase differences between the spots by lateral shifting of the inference pattern. (a) Interference pattern of 2×2 pinhole waves that was laterally shifted by increasing the phase difference between the left two and the right two pinholes of the array. The right picture column shows a set of lateral scan steps (0, π/2, π, 3π/2 and 2π). The complete scan (b) of 24 images shows the linear lateral shift (crosses) of the pattern with a position error (rms) of 46nm with respect to the theoretical position (straight line).

Fig. 4
Fig. 4

Holographic imaging of a blood smear sample using the phase shifting technique with a pinhole array. The pinholes 1–3 illuminate different parts of the sample, as indicated in the light microscope image (a). The three parts of the sample illuminated by the pinholes 1–3 were reconstructed separately with pinhole ref acting as reference, which was left undisturbed. The reconstructed images were combined and are shown in (b). Detailed views indicated by the dotted boxes in (b) are given in Fig. 5(a).

Fig. 5
Fig. 5

Reconstructed intensity and phase images of human blood cells. The sample was imaged using the phase shifting technique with one pinhole as reference (a). Detailed views for each pinhole (1–3) clearly show the cells in the intensity and the phase image. Even in case of a fully disturbed pinhole 2 a reconstruction is possible with pinhole array phase shifting technique. Using single pinhole DIHM (b) a reconstruction is hardly possible for the least disturbed pinhole 2, where the blood cells can still be recognized. Imaging by single pinhole DIHM becomes impossible with increasing degree of disturbance by the sample.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U n ( x , y ) = { A trg ( x , y ) exp ( i ϕ trg ( x , y ) ) , ( x , y ) Ω A trg ( x , y ) t A trg ( x , y ) exp ( i arg ( U n 1 ( x , y ) ) ) , ( x , y ) Ω A trg ( x , y ) < t U n 1 ( x , y ) , ( x , y ) Ω
U ˜ n ( ξ , η ) = FT 1 ( U n ( x , y ) )
U ˜ n ( ξ , η ) = A ˜ ill ( ξ , η ) exp ( i arg ( U ˜ n ( ξ , η ) ) )
U n + 1 ( x , y ) = FT ( U ˜ n ( ξ , η ) )
ϕ = tan 1 ( ( I 0 + I π ) / 2 I π / 2 I 0 ( I 0 + I π ) / 2 )

Metrics