Abstract

We report results of an ongoing study designed to assess the ability for enhanced detection of recently buried land-mines and/or improvised explosive devices (IED) devices using passive long-wave infrared (LWIR) polarimetric imaging. Polarimetric results are presented for a series of field tests conducted at various locations and soil types. Well-calibrated Stokes images, S0, S1, S2, and the degree-of-linear-polarization (DoLP) are recorded for different line-of-sight (LOS) slant paths at varying distances. Results span a three-year time period in which three different LWIR polarimetric camera systems are used. All three polarimetric imaging platforms used a spinning-achromatic-retarder (SAR) design capable of achieving high polarimetric frame rates and good radiometric throughput without the loss of spatial resolution inherent in other optical designs. Receiver-operating-characteristic (ROC) analysis and a standardized contrast parameter are used to compare detectability between conventional LWIR thermal and polarimetric imagery. Results suggest improved detectability, regardless of geographic location or soil type.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Reed, Y. Petillot, and J. Bell, “Model-based approach to the detection and classification of mines in sidescan sonar,” Appl. Opt. 43(2), 237–246 (2004).
    [CrossRef] [PubMed]
  2. C. Bohling, K. Hohmann, D. Scheel, D. Nodop, C. Bauer, J. Burgmeier, W. Schade, and G. Holl, “Real-time detection of mines and explosives by laser-induced breakdown spectroscopy,” in Conference on Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science (CLEO/QELS. 2006).
  3. C. Bohling, D. Scheel, K. Hohmann, W. Schade, M. Reuter, and G. Holl, “Fiber-optic laser sensor for mine detection and verification,” Appl. Opt. 45(16), 3817–3825 (2006).
    [CrossRef] [PubMed]
  4. J. A. Shaw, N. L. Seldomridge, D. L. Dunkle, P. W. Nugent, L. H. Spangler, J. J. Bromenshenk, C. B. Henderson, J. H. Churnside, and J. J. Wilson, “Polarization lidar measurements of honey bees in flight for locating land mines,” Opt. Express 13(15), 5853–5863 (2005).
    [CrossRef] [PubMed]
  5. T. H. Chua and C. L. Chen, “Fiber polarimetric stress sensors,” Appl. Opt. 28(15), 3158–3165 (1989).
    [CrossRef] [PubMed]
  6. J. S. Tyo, B. M. Ratliff, J. K. Boger, W. T. Black, D. L. Bowers, and M. P. Fetrow, “The effects of thermal equilibrium and contrast in LWIR polarimetric images,” Opt. Express 15(23), 15161–15167 (2007).
    [CrossRef] [PubMed]
  7. R. Harr and M. Polcha, “Preliminary investigation of the reststrahlen phenomenology at low-grazing angles,” Proc. SPIE 5794, 978–987 (2005).
    [CrossRef]
  8. Y. Wang, L. Li, and Y. Sun, “Adaptive imaging for forward-looking ground penetrating radar,” IEEE Trans. Aerosp. Electron. Syst. 41(3), 922–936 (2005).
    [CrossRef]
  9. J. Kositsky, R. Cosgrove, and C. Amazeen, “Results from a forward-looking GPR mine detection system,” Proc. SPIE 4742, 206–217 (2002).
    [CrossRef]
  10. T. W. Du Bosq, J. M. Lopez-Alonso, and G. D. Boreman, “Millimeter wave imaging system for land mine detection,” Appl. Opt. 45(22), 5686–5692 (2006).
    [CrossRef] [PubMed]
  11. K. Stone, J. Keller, K. Ho, M. Busch, and P. D. Gader, “On the registration of FLGPR and IR data for a forward-looking landmine detection system and its use in eliminating FLGPR false alarms,” Proc. SPIE 6953, 695314, 695314-12 (2008).
    [CrossRef]
  12. E. Winter, M. Miller, C. Simi, and A. Hill, “Mine detection experiments using hyper-spectral sensors,” Proc. SPIE 5415, 1035–1041 (2004).
    [CrossRef]
  13. E. M. Winter and M. S. Silvious, “Spectral method to detect surface mines,” Proc. SPIE 6953, 69530R, 69530R-9 (2008).
    [CrossRef]
  14. A. C. Goldberg, T. Fischer, and Z. Derzko, “Application of dual-band infrared focal plane arrays to tactical and strategic military problems,” Proc. SPIE 4820, 500–514 (2003).
    [CrossRef]
  15. G. Koh, E. Winter, and M. Schatten, “Rainfall degradation of LWIR disturbed soil signature,” Proc. SPIE 6217, 62170G, 62170G-8 (2006).
    [CrossRef]
  16. W. Wolfe and G. Zissis, The Infrared Handbook, Environmental Research Institute of Michigan, Office of Naval Research, Dept. of Navy, Washington, DC (1978).
  17. G. Zissis, ed., The Infrared & Electro-Optical System Handbook, Sources of Radiation, (SPIE Optical Press, 1993), Vol. 1.
  18. J. Sergio, Z. Wang, J. Tyo, and B. Hoover, “Target Detection with Partial Mueller Polarimeters,” in Frontiers in Optics(FIOS), OSA Technical Digest (Optical Society of America, 2008), paper FThO7.
  19. J. S. Tyo, B. M. Ratliff, J. K. Boger, W. T. Black, D. L. Bowers, and M. P. Fetrow, “The effects of thermal equilibrium and contrast in LWIR polarimetric images,” Opt. Express 15(23), 15161–15167 (2007).
    [CrossRef] [PubMed]
  20. K. P. Gurton and R. Dahmani, “Effect of surface roughness and complex indices of refraction on polarized thermal emission,” Appl. Opt. 44(26), 5361–5367 (2005).
    [CrossRef] [PubMed]
  21. E. Hecht and A. Zajac, Optics (Addison-Wesley, 1979), Vol. 22, pp. 4223–4227.
  22. M. Kudenov, L. Pezzaniti, and G. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
    [CrossRef]
  23. C. S. L. Chun, D. L. Fleming, and E. J. Torok, “Polarization sensitive, thermal imaging,” in Automatic Object Recognition IV, F. A. Sadjadi, ed., Proc. SPIE 2234, 275–286 (1994).
  24. J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V, 58880V-12 (2005).
    [CrossRef]
  25. J. L. Pezzaniti and R. A. Chipman, “Imaging polarimeters for optical metrology,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman and J. W. Morris, eds., Proc. SPIE 1317, 280–294 (1990).
  26. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
    [CrossRef]
  27. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [CrossRef] [PubMed]
  28. T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett. 27(8), 861–874 (2006).
    [CrossRef]
  29. A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,” Pattern Recognit. 30(7), 1145–1159 (1997).
    [CrossRef]
  30. J. K. Gohagan, E. L. Spitznagel, M. M. McCrate, and T. B. Frank, “ROC analysis of mammography and palpation for breast screening,” Invest. Radiol. 19(6), 587–592 (1984).
    [CrossRef] [PubMed]
  31. W. Dillon and M. Goldstein, Multivariate Analysis Methods and Applications (John Wiley & Sons, 1984).
  32. M. Felton, K. P. Gurton, J. L. Pezzaniti, D. B. Chenault, and L. E. Roth, “Measured comparison of the crossover periods for mid- and long-wave IR (MWIR and LWIR) polarimetric and conventional thermal imagery,” Opt. Express 18(15), 15704–15713 (2010).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

M. Kudenov, L. Pezzaniti, and G. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

2008 (2)

K. Stone, J. Keller, K. Ho, M. Busch, and P. D. Gader, “On the registration of FLGPR and IR data for a forward-looking landmine detection system and its use in eliminating FLGPR false alarms,” Proc. SPIE 6953, 695314, 695314-12 (2008).
[CrossRef]

E. M. Winter and M. S. Silvious, “Spectral method to detect surface mines,” Proc. SPIE 6953, 69530R, 69530R-9 (2008).
[CrossRef]

2007 (2)

2006 (5)

2005 (5)

J. A. Shaw, N. L. Seldomridge, D. L. Dunkle, P. W. Nugent, L. H. Spangler, J. J. Bromenshenk, C. B. Henderson, J. H. Churnside, and J. J. Wilson, “Polarization lidar measurements of honey bees in flight for locating land mines,” Opt. Express 13(15), 5853–5863 (2005).
[CrossRef] [PubMed]

R. Harr and M. Polcha, “Preliminary investigation of the reststrahlen phenomenology at low-grazing angles,” Proc. SPIE 5794, 978–987 (2005).
[CrossRef]

Y. Wang, L. Li, and Y. Sun, “Adaptive imaging for forward-looking ground penetrating radar,” IEEE Trans. Aerosp. Electron. Syst. 41(3), 922–936 (2005).
[CrossRef]

K. P. Gurton and R. Dahmani, “Effect of surface roughness and complex indices of refraction on polarized thermal emission,” Appl. Opt. 44(26), 5361–5367 (2005).
[CrossRef] [PubMed]

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V, 58880V-12 (2005).
[CrossRef]

2004 (2)

E. Winter, M. Miller, C. Simi, and A. Hill, “Mine detection experiments using hyper-spectral sensors,” Proc. SPIE 5415, 1035–1041 (2004).
[CrossRef]

S. Reed, Y. Petillot, and J. Bell, “Model-based approach to the detection and classification of mines in sidescan sonar,” Appl. Opt. 43(2), 237–246 (2004).
[CrossRef] [PubMed]

2003 (1)

A. C. Goldberg, T. Fischer, and Z. Derzko, “Application of dual-band infrared focal plane arrays to tactical and strategic military problems,” Proc. SPIE 4820, 500–514 (2003).
[CrossRef]

2002 (1)

J. Kositsky, R. Cosgrove, and C. Amazeen, “Results from a forward-looking GPR mine detection system,” Proc. SPIE 4742, 206–217 (2002).
[CrossRef]

1997 (1)

A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,” Pattern Recognit. 30(7), 1145–1159 (1997).
[CrossRef]

1995 (1)

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[CrossRef]

1989 (1)

1984 (1)

J. K. Gohagan, E. L. Spitznagel, M. M. McCrate, and T. B. Frank, “ROC analysis of mammography and palpation for breast screening,” Invest. Radiol. 19(6), 587–592 (1984).
[CrossRef] [PubMed]

Amazeen, C.

J. Kositsky, R. Cosgrove, and C. Amazeen, “Results from a forward-looking GPR mine detection system,” Proc. SPIE 4742, 206–217 (2002).
[CrossRef]

Bell, J.

Black, W. T.

Boger, J. K.

Bohling, C.

Boreman, G. D.

Bowers, D. L.

Bradley, A. P.

A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,” Pattern Recognit. 30(7), 1145–1159 (1997).
[CrossRef]

Bromenshenk, J. J.

Busch, M.

K. Stone, J. Keller, K. Ho, M. Busch, and P. D. Gader, “On the registration of FLGPR and IR data for a forward-looking landmine detection system and its use in eliminating FLGPR false alarms,” Proc. SPIE 6953, 695314, 695314-12 (2008).
[CrossRef]

Chen, C. L.

Chenault, D. B.

Chipman, R. A.

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[CrossRef]

Chua, T. H.

Churnside, J. H.

Cosgrove, R.

J. Kositsky, R. Cosgrove, and C. Amazeen, “Results from a forward-looking GPR mine detection system,” Proc. SPIE 4742, 206–217 (2002).
[CrossRef]

Dahmani, R.

Derzko, Z.

A. C. Goldberg, T. Fischer, and Z. Derzko, “Application of dual-band infrared focal plane arrays to tactical and strategic military problems,” Proc. SPIE 4820, 500–514 (2003).
[CrossRef]

Du Bosq, T. W.

Dunkle, D. L.

Fawcett, T.

T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett. 27(8), 861–874 (2006).
[CrossRef]

Felton, M.

Fetrow, M. P.

Fischer, T.

A. C. Goldberg, T. Fischer, and Z. Derzko, “Application of dual-band infrared focal plane arrays to tactical and strategic military problems,” Proc. SPIE 4820, 500–514 (2003).
[CrossRef]

Frank, T. B.

J. K. Gohagan, E. L. Spitznagel, M. M. McCrate, and T. B. Frank, “ROC analysis of mammography and palpation for breast screening,” Invest. Radiol. 19(6), 587–592 (1984).
[CrossRef] [PubMed]

Gader, P. D.

K. Stone, J. Keller, K. Ho, M. Busch, and P. D. Gader, “On the registration of FLGPR and IR data for a forward-looking landmine detection system and its use in eliminating FLGPR false alarms,” Proc. SPIE 6953, 695314, 695314-12 (2008).
[CrossRef]

Gerhart, G.

M. Kudenov, L. Pezzaniti, and G. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

Gohagan, J. K.

J. K. Gohagan, E. L. Spitznagel, M. M. McCrate, and T. B. Frank, “ROC analysis of mammography and palpation for breast screening,” Invest. Radiol. 19(6), 587–592 (1984).
[CrossRef] [PubMed]

Goldberg, A. C.

A. C. Goldberg, T. Fischer, and Z. Derzko, “Application of dual-band infrared focal plane arrays to tactical and strategic military problems,” Proc. SPIE 4820, 500–514 (2003).
[CrossRef]

Goldstein, D. L.

Gurton, K. P.

Harr, R.

R. Harr and M. Polcha, “Preliminary investigation of the reststrahlen phenomenology at low-grazing angles,” Proc. SPIE 5794, 978–987 (2005).
[CrossRef]

Henderson, C. B.

Hill, A.

E. Winter, M. Miller, C. Simi, and A. Hill, “Mine detection experiments using hyper-spectral sensors,” Proc. SPIE 5415, 1035–1041 (2004).
[CrossRef]

Ho, K.

K. Stone, J. Keller, K. Ho, M. Busch, and P. D. Gader, “On the registration of FLGPR and IR data for a forward-looking landmine detection system and its use in eliminating FLGPR false alarms,” Proc. SPIE 6953, 695314, 695314-12 (2008).
[CrossRef]

Hohmann, K.

Holl, G.

Keller, J.

K. Stone, J. Keller, K. Ho, M. Busch, and P. D. Gader, “On the registration of FLGPR and IR data for a forward-looking landmine detection system and its use in eliminating FLGPR false alarms,” Proc. SPIE 6953, 695314, 695314-12 (2008).
[CrossRef]

Koh, G.

G. Koh, E. Winter, and M. Schatten, “Rainfall degradation of LWIR disturbed soil signature,” Proc. SPIE 6217, 62170G, 62170G-8 (2006).
[CrossRef]

Kositsky, J.

J. Kositsky, R. Cosgrove, and C. Amazeen, “Results from a forward-looking GPR mine detection system,” Proc. SPIE 4742, 206–217 (2002).
[CrossRef]

Kudenov, M.

M. Kudenov, L. Pezzaniti, and G. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

Li, L.

Y. Wang, L. Li, and Y. Sun, “Adaptive imaging for forward-looking ground penetrating radar,” IEEE Trans. Aerosp. Electron. Syst. 41(3), 922–936 (2005).
[CrossRef]

Lopez-Alonso, J. M.

McCrate, M. M.

J. K. Gohagan, E. L. Spitznagel, M. M. McCrate, and T. B. Frank, “ROC analysis of mammography and palpation for breast screening,” Invest. Radiol. 19(6), 587–592 (1984).
[CrossRef] [PubMed]

Miller, M.

E. Winter, M. Miller, C. Simi, and A. Hill, “Mine detection experiments using hyper-spectral sensors,” Proc. SPIE 5415, 1035–1041 (2004).
[CrossRef]

Nugent, P. W.

Petillot, Y.

Pezzaniti, J. L.

M. Felton, K. P. Gurton, J. L. Pezzaniti, D. B. Chenault, and L. E. Roth, “Measured comparison of the crossover periods for mid- and long-wave IR (MWIR and LWIR) polarimetric and conventional thermal imagery,” Opt. Express 18(15), 15704–15713 (2010).
[CrossRef] [PubMed]

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V, 58880V-12 (2005).
[CrossRef]

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[CrossRef]

Pezzaniti, L.

M. Kudenov, L. Pezzaniti, and G. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

Polcha, M.

R. Harr and M. Polcha, “Preliminary investigation of the reststrahlen phenomenology at low-grazing angles,” Proc. SPIE 5794, 978–987 (2005).
[CrossRef]

Ratliff, B. M.

Reed, S.

Reuter, M.

Roth, L. E.

Schade, W.

Schatten, M.

G. Koh, E. Winter, and M. Schatten, “Rainfall degradation of LWIR disturbed soil signature,” Proc. SPIE 6217, 62170G, 62170G-8 (2006).
[CrossRef]

Scheel, D.

Seldomridge, N. L.

Shaw, J. A.

Silvious, M. S.

E. M. Winter and M. S. Silvious, “Spectral method to detect surface mines,” Proc. SPIE 6953, 69530R, 69530R-9 (2008).
[CrossRef]

Simi, C.

E. Winter, M. Miller, C. Simi, and A. Hill, “Mine detection experiments using hyper-spectral sensors,” Proc. SPIE 5415, 1035–1041 (2004).
[CrossRef]

Spangler, L. H.

Spitznagel, E. L.

J. K. Gohagan, E. L. Spitznagel, M. M. McCrate, and T. B. Frank, “ROC analysis of mammography and palpation for breast screening,” Invest. Radiol. 19(6), 587–592 (1984).
[CrossRef] [PubMed]

Stone, K.

K. Stone, J. Keller, K. Ho, M. Busch, and P. D. Gader, “On the registration of FLGPR and IR data for a forward-looking landmine detection system and its use in eliminating FLGPR false alarms,” Proc. SPIE 6953, 695314, 695314-12 (2008).
[CrossRef]

Sun, Y.

Y. Wang, L. Li, and Y. Sun, “Adaptive imaging for forward-looking ground penetrating radar,” IEEE Trans. Aerosp. Electron. Syst. 41(3), 922–936 (2005).
[CrossRef]

Tyo, J. S.

Wang, Y.

Y. Wang, L. Li, and Y. Sun, “Adaptive imaging for forward-looking ground penetrating radar,” IEEE Trans. Aerosp. Electron. Syst. 41(3), 922–936 (2005).
[CrossRef]

Wilson, J. J.

Winter, E.

G. Koh, E. Winter, and M. Schatten, “Rainfall degradation of LWIR disturbed soil signature,” Proc. SPIE 6217, 62170G, 62170G-8 (2006).
[CrossRef]

E. Winter, M. Miller, C. Simi, and A. Hill, “Mine detection experiments using hyper-spectral sensors,” Proc. SPIE 5415, 1035–1041 (2004).
[CrossRef]

Winter, E. M.

E. M. Winter and M. S. Silvious, “Spectral method to detect surface mines,” Proc. SPIE 6953, 69530R, 69530R-9 (2008).
[CrossRef]

Appl. Opt. (6)

IEEE Trans. Aerosp. Electron. Syst. (1)

Y. Wang, L. Li, and Y. Sun, “Adaptive imaging for forward-looking ground penetrating radar,” IEEE Trans. Aerosp. Electron. Syst. 41(3), 922–936 (2005).
[CrossRef]

Invest. Radiol. (1)

J. K. Gohagan, E. L. Spitznagel, M. M. McCrate, and T. B. Frank, “ROC analysis of mammography and palpation for breast screening,” Invest. Radiol. 19(6), 587–592 (1984).
[CrossRef] [PubMed]

Opt. Eng. (2)

M. Kudenov, L. Pezzaniti, and G. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[CrossRef]

Opt. Express (4)

Pattern Recognit. (1)

A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,” Pattern Recognit. 30(7), 1145–1159 (1997).
[CrossRef]

Pattern Recognit. Lett. (1)

T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett. 27(8), 861–874 (2006).
[CrossRef]

Proc. SPIE (8)

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V, 58880V-12 (2005).
[CrossRef]

R. Harr and M. Polcha, “Preliminary investigation of the reststrahlen phenomenology at low-grazing angles,” Proc. SPIE 5794, 978–987 (2005).
[CrossRef]

J. Kositsky, R. Cosgrove, and C. Amazeen, “Results from a forward-looking GPR mine detection system,” Proc. SPIE 4742, 206–217 (2002).
[CrossRef]

K. Stone, J. Keller, K. Ho, M. Busch, and P. D. Gader, “On the registration of FLGPR and IR data for a forward-looking landmine detection system and its use in eliminating FLGPR false alarms,” Proc. SPIE 6953, 695314, 695314-12 (2008).
[CrossRef]

E. Winter, M. Miller, C. Simi, and A. Hill, “Mine detection experiments using hyper-spectral sensors,” Proc. SPIE 5415, 1035–1041 (2004).
[CrossRef]

E. M. Winter and M. S. Silvious, “Spectral method to detect surface mines,” Proc. SPIE 6953, 69530R, 69530R-9 (2008).
[CrossRef]

A. C. Goldberg, T. Fischer, and Z. Derzko, “Application of dual-band infrared focal plane arrays to tactical and strategic military problems,” Proc. SPIE 4820, 500–514 (2003).
[CrossRef]

G. Koh, E. Winter, and M. Schatten, “Rainfall degradation of LWIR disturbed soil signature,” Proc. SPIE 6217, 62170G, 62170G-8 (2006).
[CrossRef]

Other (8)

W. Wolfe and G. Zissis, The Infrared Handbook, Environmental Research Institute of Michigan, Office of Naval Research, Dept. of Navy, Washington, DC (1978).

G. Zissis, ed., The Infrared & Electro-Optical System Handbook, Sources of Radiation, (SPIE Optical Press, 1993), Vol. 1.

J. Sergio, Z. Wang, J. Tyo, and B. Hoover, “Target Detection with Partial Mueller Polarimeters,” in Frontiers in Optics(FIOS), OSA Technical Digest (Optical Society of America, 2008), paper FThO7.

C. Bohling, K. Hohmann, D. Scheel, D. Nodop, C. Bauer, J. Burgmeier, W. Schade, and G. Holl, “Real-time detection of mines and explosives by laser-induced breakdown spectroscopy,” in Conference on Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science (CLEO/QELS. 2006).

J. L. Pezzaniti and R. A. Chipman, “Imaging polarimeters for optical metrology,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman and J. W. Morris, eds., Proc. SPIE 1317, 280–294 (1990).

C. S. L. Chun, D. L. Fleming, and E. J. Torok, “Polarization sensitive, thermal imaging,” in Automatic Object Recognition IV, F. A. Sadjadi, ed., Proc. SPIE 2234, 275–286 (1994).

E. Hecht and A. Zajac, Optics (Addison-Wesley, 1979), Vol. 22, pp. 4223–4227.

W. Dillon and M. Goldstein, Multivariate Analysis Methods and Applications (John Wiley & Sons, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Basic design of a spinning achromatic retarder (SAR) LWIR polarimetric imager.

Fig. 2
Fig. 2

2(a) A image histogram where the target (right Gaussian) and background (left Gaussian) regions are defined and, 2(b) the corresponding ROC curve, where the area under the curve is related to the probability for detection the target within the scene.

Fig. 3
Fig. 3

Photograph of DE region May 22, 2008 test conducted at U.S. Army Research Laboratory, Adelphi, MD site. 3(a) DE test-bed (red oval area represents buried target and 3(b) a close up of the DE region (clay-gravel-soil mixture).

Fig. 4
Fig. 4

Schematic for the initial test conducted on May 22, 2008 showing the positioning of the LWIR polarimetric camera with respect to the DE test region.

Fig. 5
Fig. 5

(a) conventional LWIR thermal image, S0, for the DE region highlighted in Fig. 3 recorded on May 22, 2008. Figures 5(b)-(d) show the resultant Stokes images S1, S2, and degree-of-linear-polarization (DoLP) image where the DE region is shown by an identifying arrow.

Fig. 6
Fig. 6

Corresponding ROC curves calculated for images shown in Figs. 5(a)5(d), in which the probability of detection is defined as the integrated area under each respective curve.

Fig. 7
Fig. 7

Test area recorded on August 27, 2009. 7(a) The packed red-clay-silt soil field used to generate the DE regions, and 7(d) the subsequent camouflage and raking of the area.

Fig. 8
Fig. 8

The polarimetric image set for August 27, 2009 test where the DE regions are shown by the identifying arrows. (a) Conventional LWIR thermal image S0; (b) Stokes image S1; (c) Stokes image S2; and (d) DoLP image, recorded with the microbolometer based SAR polarimetric sensor.

Fig. 9
Fig. 9

Radiant and polarimetric imagery recorded on Sept. 3, 2009 at the original May 22, 2008 site. 9(a) Conventional thermal LWIR image, S0, 9(b) Stokes image, S1, 9(c) Stokes image, S2, and 9(d) DoLP image, recorded using a microbolometer based SAR imaging polarimeter.

Fig. 10
Fig. 10

Radiant and polarimetric imagery recorded on Sept. 4, 2009 showing the effect of shadowing and ambient radiant loading on a DE region. Target site consisted of a topsoil mixture of fine dirt and gravel. (a) Conventional thermal LWIR image S0; (b) Stokes image S1; (c) Stokes image S2; and (d) DoLP image, recorded using the microbolometer based SAR imaging polarimeter.

Fig. 11
Fig. 11

(a) The FLGPR vehicle platform in which the 640x480 SAR polarimetric sensor was mounted and positioned at an angle of 24 degrees with respect to the LOS and the target surface. (b) Shows a typical surrogate IED being buried in the arid desert soil. (c) A typical DE region after burial.

Fig. 12
Fig. 12

Typical evolution of visible, thermal, and polarimetric signatures for a DE region over the five day period from Oct. 1-5, 2011, where the DE region is identified by the identifying arrow. (a) Target 2 recorded on Oct. 1, 2011 under a clear sky condition. (b) Target 2 recorded on Oct. 3, 2011, during dense overcast conditions. (c) Target 2 recorded on Oct. 5, 2011, under light cloud cover and after a moderate rain event that occurred on Oct. 4, 20011.

Tables (8)

Tables Icon

Table 1 Average radiant and polarimetric values for DE and background ROI regions for images shown in Figs. 5(a)-5(d), recorded on May 22, 2008.

Tables Icon

Table 2 Comparison of the contrast parameter and ROC curve results for the image set shown in Figs. 5(a)-5(d), recorded on May 22, 2008.

Tables Icon

Table 3 Average radiant and polarimetric values for the DE and background regions shown in Figs. 8(a)-8(b) for the red-clay-silt test site recorded on August 27, 2009.

Tables Icon

Table 4 Comparison of the contrast parameter and ROC curve results for the red-clay-soil surfaces shown in Fig. 7(a)-7(d), recorded on August 27, 2009.

Tables Icon

Table 5 Average radiant and polarimetric values for DE and background ROIs recorded on September 3 - 4, 2009 for the image sets shown in Figs. 9 and 10 using the LWIR microbolometer SAR polarimetric sensor.

Tables Icon

Table 6 Comparison of the contrast parameter and ROC curve results for the DE tests recorded on September 3 - 4, 2009 for the image sets shown in Figs. 9 and 10 using the LWIR microbolometer SAR polarimetric sensor.

Tables Icon

Table 7 Radiance and polarimetric values for DE targets (TG)1-5 and corresponding background (BG) regions.

Tables Icon

Table 8 ROC curve and contrast parameter (CP) values for DE regions 1-5 recorded on Oct. 1-5, 2011.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S1 = I( 0 )  I( 90 ) ( w/sr m 2 ),
S2 = I(  + 45 )  I( 45 ) ( w/sr m 2 ).
S0 = I( 0 ) + I( 90 ) total radiance ( w/sr m 2 ),
DoLP = S 1 2 +S 2 2 S0 ,
Cº| ū T ū B |,

Metrics