Abstract

Ge/Si heterojunction light emitting diodes with 20-bilayers undoped or phosphorus in situ doped GeSi islands were fabricated on n+-Si(001) substrates by ultrahigh vacuum chemical vapor deposition (UHV-CVD). Enhanced room temperature photoluminescence (PL) and electroluminescence (EL) around 1.5 μm were observed from the devices with phosphorus-doped GeSi islands. Theoretical calculations indicated that the emission is from the radiative recombination in GeSi islands. The intensity enhancement of PL and EL is attributed to the sufficient supply of electrons in active layer for radiative recombination.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
    [CrossRef] [PubMed]
  2. W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, “Electroluminescence from Ge on Si substrate at room temperature,” Appl. Phys. Lett. 95(9), 092102 (2009).
    [CrossRef]
  3. M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
    [CrossRef] [PubMed]
  4. A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353(6342), 335–338 (1991).
    [CrossRef]
  5. J. Stangl, V. Holy, and G. Bauer, “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76(3), 725–783 (2004).
    [CrossRef]
  6. J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74(2), 185–187 (1999).
    [CrossRef]
  7. W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
    [CrossRef]
  8. M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, “Type II band alignment in Si1-xGex/Si(001) quantum wells: The ubiquitous type I luminescence results from band bending,” Phys. Rev. Lett. 79(2), 269–272 (1997).
    [CrossRef]
  9. S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
    [CrossRef]
  10. M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J. M. Lourtioz, “Strong 1.3–1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
    [CrossRef]
  11. M. Shaleev, A. Novikov, N. Baydakova, A. Yablonskiy, O. Kuznetsov, Y. Drozdov, D. Lobanov, and Z. Krasilnik, “Narrow photoluminescence peak from Ge(Si) islands embedded between tensile-strained Si layers,” Phys. Status Solidi C, 1055–1059 (2011).
  12. S. Das, K. Das, R. K. Singha, S. Manna, A. Dhar, S. K. Ray, and A. K. Raychaudhuri, “Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands,” Nanoscale Res. Lett. 6(1), 416 (2011).
    [CrossRef] [PubMed]
  13. J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18(13), 13945–13950 (2010).
    [CrossRef] [PubMed]
  14. K. J. Vahala and C. E. Zah, “Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions,” Appl. Phys. Lett. 52(23), 1945–1947 (1988).
    [CrossRef]
  15. B. Cho, J. Bareno, I. Petrov, and J. E. Greene, “Enhanced Ge/Si(001) island areal density and self-organization due to P predeposition,” J. Appl. Phys. 109(9), 093526–093528 (2011).
    [CrossRef]
  16. W. H. Shi, C. B. Li, L. P. Luo, B. W. Cheng, and Q. M. Wang, “Growth of Ge quantum dot mediated by boron on Ge wetting layer,” J. Cryst. Growth 279(3-4), 329–334 (2005).
    [CrossRef]
  17. C. H. Lin, C. Y. Yu, P. S. Kuo, C. C. Chang, T. H. Guo, and C. W. Liu, “δ-Doped MOS Ge/Si quantum dot/well infrared photodetector,” Thin Solid Films 508(1-2), 389–392 (2006).
    [CrossRef]
  18. X. C. Liu and D. R. Leadley, “Silicon-germanium interdiffusion in strained Ge/SiGe multiple quantum well structures,” J. Phys. D Appl. Phys. 43(50), 505303 (2010).
    [CrossRef]
  19. M. Meduňa, O. Caha, M. Keplinger, J. Stangl, G. Bauer, G. Mussler, and D. Grützmacher, “Interdiffusion in Ge rich SiGe/Ge multilayers studied by in situ diffraction,” Phys. Status Solidi A 206(8), 1775–1779 (2009).
    [CrossRef]
  20. Z. Liu, B. Cheng, W. Hu, S. Su, C. Li, and Q. Wang, “Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature,” Nanoscale Res. Lett. 7(1), 383 (2012).
    [CrossRef] [PubMed]
  21. See support documents for PL spectra of 4-bilayer samples with undoped, phosphorus-doped, and boron-doped GeSi islands.
  22. J. I. Pankove, Electroluminescence (Springer, Berlin, 1977).
  23. Y. H. Peng, C. H. Hsu, C. H. Kuan, C. W. Liu, P. S. Chen, M. J. Tsai, and Y. W. Suen, “The evolution of electroluminescence in Ge quantum-dot diodes with the fold number,” Appl. Phys. Lett. 85(25), 6107–6109 (2004).
    [CrossRef]
  24. M. W. Dashiell, U. Denker, C. Muller, G. Costantini, C. Manzano, K. Kern, and O. G. Schmidt, “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,” Appl. Phys. Lett. 80(7), 1279–1281 (2002).
    [CrossRef]
  25. See support documents for the Raman spectra of two samples.
  26. P. M. Mooney, F. H. Dacol, J. C. Tsang, and J. O. Chu, “Raman scattering analysis of relaxed GexSi1−x alloy layers,” Appl. Phys. Lett. 62(17), 2069–2071 (1993).
    [CrossRef]
  27. V. A. Volodin, A. I. Yakimov, A. V. Dvurechenskii, M. D. Efremov, A. I. Nikiforov, E. I. Gatskevich, G. D. Ivlev, and G. Y. Mikhalev, “Modification of quantum dots in Ge/Si nanostructures by pulsed laser irradiation,” Semiconductors 40(2), 202–209 (2006).
    [CrossRef]
  28. K. Drozdowicz-Tomsia, E. M. Goldys, L. Fu, and C. Jagadish, “Doping effect on dark currents in In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(11), 113510 (2006).
    [CrossRef]
  29. Y. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, “Comparative analysis of photo- and electroluminescence of multilayer structures with Ge(Si)/Si(001) self-assembled islands,” Thin Solid Films 517(1), 398–400 (2008).
    [CrossRef]

2012 (1)

Z. Liu, B. Cheng, W. Hu, S. Su, C. Li, and Q. Wang, “Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature,” Nanoscale Res. Lett. 7(1), 383 (2012).
[CrossRef] [PubMed]

2011 (3)

B. Cho, J. Bareno, I. Petrov, and J. E. Greene, “Enhanced Ge/Si(001) island areal density and self-organization due to P predeposition,” J. Appl. Phys. 109(9), 093526–093528 (2011).
[CrossRef]

M. Shaleev, A. Novikov, N. Baydakova, A. Yablonskiy, O. Kuznetsov, Y. Drozdov, D. Lobanov, and Z. Krasilnik, “Narrow photoluminescence peak from Ge(Si) islands embedded between tensile-strained Si layers,” Phys. Status Solidi C, 1055–1059 (2011).

S. Das, K. Das, R. K. Singha, S. Manna, A. Dhar, S. K. Ray, and A. K. Raychaudhuri, “Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands,” Nanoscale Res. Lett. 6(1), 416 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (2)

M. Meduňa, O. Caha, M. Keplinger, J. Stangl, G. Bauer, G. Mussler, and D. Grützmacher, “Interdiffusion in Ge rich SiGe/Ge multilayers studied by in situ diffraction,” Phys. Status Solidi A 206(8), 1775–1779 (2009).
[CrossRef]

W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, “Electroluminescence from Ge on Si substrate at room temperature,” Appl. Phys. Lett. 95(9), 092102 (2009).
[CrossRef]

2008 (1)

Y. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, “Comparative analysis of photo- and electroluminescence of multilayer structures with Ge(Si)/Si(001) self-assembled islands,” Thin Solid Films 517(1), 398–400 (2008).
[CrossRef]

2006 (3)

V. A. Volodin, A. I. Yakimov, A. V. Dvurechenskii, M. D. Efremov, A. I. Nikiforov, E. I. Gatskevich, G. D. Ivlev, and G. Y. Mikhalev, “Modification of quantum dots in Ge/Si nanostructures by pulsed laser irradiation,” Semiconductors 40(2), 202–209 (2006).
[CrossRef]

K. Drozdowicz-Tomsia, E. M. Goldys, L. Fu, and C. Jagadish, “Doping effect on dark currents in In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(11), 113510 (2006).
[CrossRef]

C. H. Lin, C. Y. Yu, P. S. Kuo, C. C. Chang, T. H. Guo, and C. W. Liu, “δ-Doped MOS Ge/Si quantum dot/well infrared photodetector,” Thin Solid Films 508(1-2), 389–392 (2006).
[CrossRef]

2005 (1)

W. H. Shi, C. B. Li, L. P. Luo, B. W. Cheng, and Q. M. Wang, “Growth of Ge quantum dot mediated by boron on Ge wetting layer,” J. Cryst. Growth 279(3-4), 329–334 (2005).
[CrossRef]

2004 (3)

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J. M. Lourtioz, “Strong 1.3–1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[CrossRef]

Y. H. Peng, C. H. Hsu, C. H. Kuan, C. W. Liu, P. S. Chen, M. J. Tsai, and Y. W. Suen, “The evolution of electroluminescence in Ge quantum-dot diodes with the fold number,” Appl. Phys. Lett. 85(25), 6107–6109 (2004).
[CrossRef]

J. Stangl, V. Holy, and G. Bauer, “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76(3), 725–783 (2004).
[CrossRef]

2003 (1)

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
[CrossRef]

2002 (1)

M. W. Dashiell, U. Denker, C. Muller, G. Costantini, C. Manzano, K. Kern, and O. G. Schmidt, “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,” Appl. Phys. Lett. 80(7), 1279–1281 (2002).
[CrossRef]

2001 (1)

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

1999 (1)

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74(2), 185–187 (1999).
[CrossRef]

1997 (2)

M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, “Type II band alignment in Si1-xGex/Si(001) quantum wells: The ubiquitous type I luminescence results from band bending,” Phys. Rev. Lett. 79(2), 269–272 (1997).
[CrossRef]

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
[CrossRef]

1993 (1)

P. M. Mooney, F. H. Dacol, J. C. Tsang, and J. O. Chu, “Raman scattering analysis of relaxed GexSi1−x alloy layers,” Appl. Phys. Lett. 62(17), 2069–2071 (1993).
[CrossRef]

1991 (1)

A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353(6342), 335–338 (1991).
[CrossRef]

1988 (1)

K. J. Vahala and C. E. Zah, “Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions,” Appl. Phys. Lett. 52(23), 1945–1947 (1988).
[CrossRef]

Bai, A.

W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, “Electroluminescence from Ge on Si substrate at room temperature,” Appl. Phys. Lett. 95(9), 092102 (2009).
[CrossRef]

Balandin, A.

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74(2), 185–187 (1999).
[CrossRef]

Bareno, J.

B. Cho, J. Bareno, I. Petrov, and J. E. Greene, “Enhanced Ge/Si(001) island areal density and self-organization due to P predeposition,” J. Appl. Phys. 109(9), 093526–093528 (2011).
[CrossRef]

Bauer, G.

M. Meduňa, O. Caha, M. Keplinger, J. Stangl, G. Bauer, G. Mussler, and D. Grützmacher, “Interdiffusion in Ge rich SiGe/Ge multilayers studied by in situ diffraction,” Phys. Status Solidi A 206(8), 1775–1779 (2009).
[CrossRef]

J. Stangl, V. Holy, and G. Bauer, “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76(3), 725–783 (2004).
[CrossRef]

Baydakova, N.

M. Shaleev, A. Novikov, N. Baydakova, A. Yablonskiy, O. Kuznetsov, Y. Drozdov, D. Lobanov, and Z. Krasilnik, “Narrow photoluminescence peak from Ge(Si) islands embedded between tensile-strained Si layers,” Phys. Status Solidi C, 1055–1059 (2011).

Boucaud, P.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J. M. Lourtioz, “Strong 1.3–1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[CrossRef]

Caha, O.

M. Meduňa, O. Caha, M. Keplinger, J. Stangl, G. Bauer, G. Mussler, and D. Grützmacher, “Interdiffusion in Ge rich SiGe/Ge multilayers studied by in situ diffraction,” Phys. Status Solidi A 206(8), 1775–1779 (2009).
[CrossRef]

Camacho-Aguilera, R.

Canham, L. T.

A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353(6342), 335–338 (1991).
[CrossRef]

Chang, C. C.

C. H. Lin, C. Y. Yu, P. S. Kuo, C. C. Chang, T. H. Guo, and C. W. Liu, “δ-Doped MOS Ge/Si quantum dot/well infrared photodetector,” Thin Solid Films 508(1-2), 389–392 (2006).
[CrossRef]

Chang, H. S.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
[CrossRef]

Chang, W. H.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
[CrossRef]

Chen, P. S.

Y. H. Peng, C. H. Hsu, C. H. Kuan, C. W. Liu, P. S. Chen, M. J. Tsai, and Y. W. Suen, “The evolution of electroluminescence in Ge quantum-dot diodes with the fold number,” Appl. Phys. Lett. 85(25), 6107–6109 (2004).
[CrossRef]

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
[CrossRef]

Chen, W. Y.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
[CrossRef]

Cheng, B.

Z. Liu, B. Cheng, W. Hu, S. Su, C. Li, and Q. Wang, “Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature,” Nanoscale Res. Lett. 7(1), 383 (2012).
[CrossRef] [PubMed]

W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, “Electroluminescence from Ge on Si substrate at room temperature,” Appl. Phys. Lett. 95(9), 092102 (2009).
[CrossRef]

Cheng, B. W.

W. H. Shi, C. B. Li, L. P. Luo, B. W. Cheng, and Q. M. Wang, “Growth of Ge quantum dot mediated by boron on Ge wetting layer,” J. Cryst. Growth 279(3-4), 329–334 (2005).
[CrossRef]

Cho, B.

B. Cho, J. Bareno, I. Petrov, and J. E. Greene, “Enhanced Ge/Si(001) island areal density and self-organization due to P predeposition,” J. Appl. Phys. 109(9), 093526–093528 (2011).
[CrossRef]

Chou, A. T.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
[CrossRef]

Chu, J. O.

P. M. Mooney, F. H. Dacol, J. C. Tsang, and J. O. Chu, “Raman scattering analysis of relaxed GexSi1−x alloy layers,” Appl. Phys. Lett. 62(17), 2069–2071 (1993).
[CrossRef]

Costantini, G.

M. W. Dashiell, U. Denker, C. Muller, G. Costantini, C. Manzano, K. Kern, and O. G. Schmidt, “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,” Appl. Phys. Lett. 80(7), 1279–1281 (2002).
[CrossRef]

Cullis, A. G.

A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353(6342), 335–338 (1991).
[CrossRef]

Dacol, F. H.

P. M. Mooney, F. H. Dacol, J. C. Tsang, and J. O. Chu, “Raman scattering analysis of relaxed GexSi1−x alloy layers,” Appl. Phys. Lett. 62(17), 2069–2071 (1993).
[CrossRef]

Das, K.

S. Das, K. Das, R. K. Singha, S. Manna, A. Dhar, S. K. Ray, and A. K. Raychaudhuri, “Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands,” Nanoscale Res. Lett. 6(1), 416 (2011).
[CrossRef] [PubMed]

Das, S.

S. Das, K. Das, R. K. Singha, S. Manna, A. Dhar, S. K. Ray, and A. K. Raychaudhuri, “Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands,” Nanoscale Res. Lett. 6(1), 416 (2011).
[CrossRef] [PubMed]

Dashiell, M. W.

M. W. Dashiell, U. Denker, C. Muller, G. Costantini, C. Manzano, K. Kern, and O. G. Schmidt, “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,” Appl. Phys. Lett. 80(7), 1279–1281 (2002).
[CrossRef]

David, S.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J. M. Lourtioz, “Strong 1.3–1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[CrossRef]

Denker, U.

M. W. Dashiell, U. Denker, C. Muller, G. Costantini, C. Manzano, K. Kern, and O. G. Schmidt, “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,” Appl. Phys. Lett. 80(7), 1279–1281 (2002).
[CrossRef]

Dhar, A.

S. Das, K. Das, R. K. Singha, S. Manna, A. Dhar, S. K. Ray, and A. K. Raychaudhuri, “Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands,” Nanoscale Res. Lett. 6(1), 416 (2011).
[CrossRef] [PubMed]

Drozdov, Y.

M. Shaleev, A. Novikov, N. Baydakova, A. Yablonskiy, O. Kuznetsov, Y. Drozdov, D. Lobanov, and Z. Krasilnik, “Narrow photoluminescence peak from Ge(Si) islands embedded between tensile-strained Si layers,” Phys. Status Solidi C, 1055–1059 (2011).

Drozdov, Y. N.

Y. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, “Comparative analysis of photo- and electroluminescence of multilayer structures with Ge(Si)/Si(001) self-assembled islands,” Thin Solid Films 517(1), 398–400 (2008).
[CrossRef]

Drozdowicz-Tomsia, K.

K. Drozdowicz-Tomsia, E. M. Goldys, L. Fu, and C. Jagadish, “Doping effect on dark currents in In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(11), 113510 (2006).
[CrossRef]

Dvurechenskii, A. V.

V. A. Volodin, A. I. Yakimov, A. V. Dvurechenskii, M. D. Efremov, A. I. Nikiforov, E. I. Gatskevich, G. D. Ivlev, and G. Y. Mikhalev, “Modification of quantum dots in Ge/Si nanostructures by pulsed laser irradiation,” Semiconductors 40(2), 202–209 (2006).
[CrossRef]

Efremov, M. D.

V. A. Volodin, A. I. Yakimov, A. V. Dvurechenskii, M. D. Efremov, A. I. Nikiforov, E. I. Gatskevich, G. D. Ivlev, and G. Y. Mikhalev, “Modification of quantum dots in Ge/Si nanostructures by pulsed laser irradiation,” Semiconductors 40(2), 202–209 (2006).
[CrossRef]

El Kurdi, M.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J. M. Lourtioz, “Strong 1.3–1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[CrossRef]

Fu, L.

K. Drozdowicz-Tomsia, E. M. Goldys, L. Fu, and C. Jagadish, “Doping effect on dark currents in In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(11), 113510 (2006).
[CrossRef]

Fukatsu, S.

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
[CrossRef]

Gal, M.

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Gatskevich, E. I.

V. A. Volodin, A. I. Yakimov, A. V. Dvurechenskii, M. D. Efremov, A. I. Nikiforov, E. I. Gatskevich, G. D. Ivlev, and G. Y. Mikhalev, “Modification of quantum dots in Ge/Si nanostructures by pulsed laser irradiation,” Semiconductors 40(2), 202–209 (2006).
[CrossRef]

Goldys, E. M.

K. Drozdowicz-Tomsia, E. M. Goldys, L. Fu, and C. Jagadish, “Doping effect on dark currents in In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(11), 113510 (2006).
[CrossRef]

Green, M. A.

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Greene, J. E.

B. Cho, J. Bareno, I. Petrov, and J. E. Greene, “Enhanced Ge/Si(001) island areal density and self-organization due to P predeposition,” J. Appl. Phys. 109(9), 093526–093528 (2011).
[CrossRef]

Grützmacher, D.

M. Meduňa, O. Caha, M. Keplinger, J. Stangl, G. Bauer, G. Mussler, and D. Grützmacher, “Interdiffusion in Ge rich SiGe/Ge multilayers studied by in situ diffraction,” Phys. Status Solidi A 206(8), 1775–1779 (2009).
[CrossRef]

Guo, T. H.

C. H. Lin, C. Y. Yu, P. S. Kuo, C. C. Chang, T. H. Guo, and C. W. Liu, “δ-Doped MOS Ge/Si quantum dot/well infrared photodetector,” Thin Solid Films 508(1-2), 389–392 (2006).
[CrossRef]

Harrison, D. A.

M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, “Type II band alignment in Si1-xGex/Si(001) quantum wells: The ubiquitous type I luminescence results from band bending,” Phys. Rev. Lett. 79(2), 269–272 (1997).
[CrossRef]

Holy, V.

J. Stangl, V. Holy, and G. Bauer, “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76(3), 725–783 (2004).
[CrossRef]

Hsu, C. H.

Y. H. Peng, C. H. Hsu, C. H. Kuan, C. W. Liu, P. S. Chen, M. J. Tsai, and Y. W. Suen, “The evolution of electroluminescence in Ge quantum-dot diodes with the fold number,” Appl. Phys. Lett. 85(25), 6107–6109 (2004).
[CrossRef]

Hsu, T. M.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
[CrossRef]

Hu, W.

Z. Liu, B. Cheng, W. Hu, S. Su, C. Li, and Q. Wang, “Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature,” Nanoscale Res. Lett. 7(1), 383 (2012).
[CrossRef] [PubMed]

W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, “Electroluminescence from Ge on Si substrate at room temperature,” Appl. Phys. Lett. 95(9), 092102 (2009).
[CrossRef]

Ivlev, G. D.

V. A. Volodin, A. I. Yakimov, A. V. Dvurechenskii, M. D. Efremov, A. I. Nikiforov, E. I. Gatskevich, G. D. Ivlev, and G. Y. Mikhalev, “Modification of quantum dots in Ge/Si nanostructures by pulsed laser irradiation,” Semiconductors 40(2), 202–209 (2006).
[CrossRef]

Jagadish, C.

K. Drozdowicz-Tomsia, E. M. Goldys, L. Fu, and C. Jagadish, “Doping effect on dark currents in In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(11), 113510 (2006).
[CrossRef]

Jin, G. L.

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74(2), 185–187 (1999).
[CrossRef]

Kammerer, C.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J. M. Lourtioz, “Strong 1.3–1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[CrossRef]

Keplinger, M.

M. Meduňa, O. Caha, M. Keplinger, J. Stangl, G. Bauer, G. Mussler, and D. Grützmacher, “Interdiffusion in Ge rich SiGe/Ge multilayers studied by in situ diffraction,” Phys. Status Solidi A 206(8), 1775–1779 (2009).
[CrossRef]

Kern, K.

M. W. Dashiell, U. Denker, C. Muller, G. Costantini, C. Manzano, K. Kern, and O. G. Schmidt, “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,” Appl. Phys. Lett. 80(7), 1279–1281 (2002).
[CrossRef]

Kimerling, L. C.

Komiyama, S.

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
[CrossRef]

Krasilnik, Z.

M. Shaleev, A. Novikov, N. Baydakova, A. Yablonskiy, O. Kuznetsov, Y. Drozdov, D. Lobanov, and Z. Krasilnik, “Narrow photoluminescence peak from Ge(Si) islands embedded between tensile-strained Si layers,” Phys. Status Solidi C, 1055–1059 (2011).

Krasilnik, Z. F.

Y. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, “Comparative analysis of photo- and electroluminescence of multilayer structures with Ge(Si)/Si(001) self-assembled islands,” Thin Solid Films 517(1), 398–400 (2008).
[CrossRef]

Kuan, C. H.

Y. H. Peng, C. H. Hsu, C. H. Kuan, C. W. Liu, P. S. Chen, M. J. Tsai, and Y. W. Suen, “The evolution of electroluminescence in Ge quantum-dot diodes with the fold number,” Appl. Phys. Lett. 85(25), 6107–6109 (2004).
[CrossRef]

Kudryavtsev, K. E.

Y. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, “Comparative analysis of photo- and electroluminescence of multilayer structures with Ge(Si)/Si(001) self-assembled islands,” Thin Solid Films 517(1), 398–400 (2008).
[CrossRef]

Kuo, P. S.

C. H. Lin, C. Y. Yu, P. S. Kuo, C. C. Chang, T. H. Guo, and C. W. Liu, “δ-Doped MOS Ge/Si quantum dot/well infrared photodetector,” Thin Solid Films 508(1-2), 389–392 (2006).
[CrossRef]

Kuznetsov, O.

M. Shaleev, A. Novikov, N. Baydakova, A. Yablonskiy, O. Kuznetsov, Y. Drozdov, D. Lobanov, and Z. Krasilnik, “Narrow photoluminescence peak from Ge(Si) islands embedded between tensile-strained Si layers,” Phys. Status Solidi C, 1055–1059 (2011).

Lafontaine, H.

M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, “Type II band alignment in Si1-xGex/Si(001) quantum wells: The ubiquitous type I luminescence results from band bending,” Phys. Rev. Lett. 79(2), 269–272 (1997).
[CrossRef]

Lai, L. S.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
[CrossRef]

Le Thanh, V.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J. M. Lourtioz, “Strong 1.3–1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[CrossRef]

Leadley, D. R.

X. C. Liu and D. R. Leadley, “Silicon-germanium interdiffusion in strained Ge/SiGe multiple quantum well structures,” J. Phys. D Appl. Phys. 43(50), 505303 (2010).
[CrossRef]

Lee, S. W.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
[CrossRef]

Li, C.

Z. Liu, B. Cheng, W. Hu, S. Su, C. Li, and Q. Wang, “Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature,” Nanoscale Res. Lett. 7(1), 383 (2012).
[CrossRef] [PubMed]

Li, C. B.

W. H. Shi, C. B. Li, L. P. Luo, B. W. Cheng, and Q. M. Wang, “Growth of Ge quantum dot mediated by boron on Ge wetting layer,” J. Cryst. Growth 279(3-4), 329–334 (2005).
[CrossRef]

Li, X.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J. M. Lourtioz, “Strong 1.3–1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[CrossRef]

Lin, C. H.

C. H. Lin, C. Y. Yu, P. S. Kuo, C. C. Chang, T. H. Guo, and C. W. Liu, “δ-Doped MOS Ge/Si quantum dot/well infrared photodetector,” Thin Solid Films 508(1-2), 389–392 (2006).
[CrossRef]

Liu, C. W.

C. H. Lin, C. Y. Yu, P. S. Kuo, C. C. Chang, T. H. Guo, and C. W. Liu, “δ-Doped MOS Ge/Si quantum dot/well infrared photodetector,” Thin Solid Films 508(1-2), 389–392 (2006).
[CrossRef]

Y. H. Peng, C. H. Hsu, C. H. Kuan, C. W. Liu, P. S. Chen, M. J. Tsai, and Y. W. Suen, “The evolution of electroluminescence in Ge quantum-dot diodes with the fold number,” Appl. Phys. Lett. 85(25), 6107–6109 (2004).
[CrossRef]

Liu, J.

Liu, J. L.

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74(2), 185–187 (1999).
[CrossRef]

Liu, X. C.

X. C. Liu and D. R. Leadley, “Silicon-germanium interdiffusion in strained Ge/SiGe multiple quantum well structures,” J. Phys. D Appl. Phys. 43(50), 505303 (2010).
[CrossRef]

Liu, Z.

Z. Liu, B. Cheng, W. Hu, S. Su, C. Li, and Q. Wang, “Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature,” Nanoscale Res. Lett. 7(1), 383 (2012).
[CrossRef] [PubMed]

Lobanov, D.

M. Shaleev, A. Novikov, N. Baydakova, A. Yablonskiy, O. Kuznetsov, Y. Drozdov, D. Lobanov, and Z. Krasilnik, “Narrow photoluminescence peak from Ge(Si) islands embedded between tensile-strained Si layers,” Phys. Status Solidi C, 1055–1059 (2011).

Lobanov, D. N.

Y. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, “Comparative analysis of photo- and electroluminescence of multilayer structures with Ge(Si)/Si(001) self-assembled islands,” Thin Solid Films 517(1), 398–400 (2008).
[CrossRef]

Lourtioz, J. M.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J. M. Lourtioz, “Strong 1.3–1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[CrossRef]

Lu, S. C.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
[CrossRef]

Luo, L.

W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, “Electroluminescence from Ge on Si substrate at room temperature,” Appl. Phys. Lett. 95(9), 092102 (2009).
[CrossRef]

Luo, L. P.

W. H. Shi, C. B. Li, L. P. Luo, B. W. Cheng, and Q. M. Wang, “Growth of Ge quantum dot mediated by boron on Ge wetting layer,” J. Cryst. Growth 279(3-4), 329–334 (2005).
[CrossRef]

Manna, S.

S. Das, K. Das, R. K. Singha, S. Manna, A. Dhar, S. K. Ray, and A. K. Raychaudhuri, “Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands,” Nanoscale Res. Lett. 6(1), 416 (2011).
[CrossRef] [PubMed]

Manzano, C.

M. W. Dashiell, U. Denker, C. Muller, G. Costantini, C. Manzano, K. Kern, and O. G. Schmidt, “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,” Appl. Phys. Lett. 80(7), 1279–1281 (2002).
[CrossRef]

Maruizumi, T.

Meduna, M.

M. Meduňa, O. Caha, M. Keplinger, J. Stangl, G. Bauer, G. Mussler, and D. Grützmacher, “Interdiffusion in Ge rich SiGe/Ge multilayers studied by in situ diffraction,” Phys. Status Solidi A 206(8), 1775–1779 (2009).
[CrossRef]

Michel, J.

Mikhalev, G. Y.

V. A. Volodin, A. I. Yakimov, A. V. Dvurechenskii, M. D. Efremov, A. I. Nikiforov, E. I. Gatskevich, G. D. Ivlev, and G. Y. Mikhalev, “Modification of quantum dots in Ge/Si nanostructures by pulsed laser irradiation,” Semiconductors 40(2), 202–209 (2006).
[CrossRef]

Mooney, P. M.

P. M. Mooney, F. H. Dacol, J. C. Tsang, and J. O. Chu, “Raman scattering analysis of relaxed GexSi1−x alloy layers,” Appl. Phys. Lett. 62(17), 2069–2071 (1993).
[CrossRef]

Muller, C.

M. W. Dashiell, U. Denker, C. Muller, G. Costantini, C. Manzano, K. Kern, and O. G. Schmidt, “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,” Appl. Phys. Lett. 80(7), 1279–1281 (2002).
[CrossRef]

Mussler, G.

M. Meduňa, O. Caha, M. Keplinger, J. Stangl, G. Bauer, G. Mussler, and D. Grützmacher, “Interdiffusion in Ge rich SiGe/Ge multilayers studied by in situ diffraction,” Phys. Status Solidi A 206(8), 1775–1779 (2009).
[CrossRef]

Nikiforov, A. I.

V. A. Volodin, A. I. Yakimov, A. V. Dvurechenskii, M. D. Efremov, A. I. Nikiforov, E. I. Gatskevich, G. D. Ivlev, and G. Y. Mikhalev, “Modification of quantum dots in Ge/Si nanostructures by pulsed laser irradiation,” Semiconductors 40(2), 202–209 (2006).
[CrossRef]

Novikov, A.

M. Shaleev, A. Novikov, N. Baydakova, A. Yablonskiy, O. Kuznetsov, Y. Drozdov, D. Lobanov, and Z. Krasilnik, “Narrow photoluminescence peak from Ge(Si) islands embedded between tensile-strained Si layers,” Phys. Status Solidi C, 1055–1059 (2011).

Novikov, A. V.

Y. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, “Comparative analysis of photo- and electroluminescence of multilayer structures with Ge(Si)/Si(001) self-assembled islands,” Thin Solid Films 517(1), 398–400 (2008).
[CrossRef]

Pei, Z.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
[CrossRef]

Peng, Y. H.

Y. H. Peng, C. H. Hsu, C. H. Kuan, C. W. Liu, P. S. Chen, M. J. Tsai, and Y. W. Suen, “The evolution of electroluminescence in Ge quantum-dot diodes with the fold number,” Appl. Phys. Lett. 85(25), 6107–6109 (2004).
[CrossRef]

Petrov, I.

B. Cho, J. Bareno, I. Petrov, and J. E. Greene, “Enhanced Ge/Si(001) island areal density and self-organization due to P predeposition,” J. Appl. Phys. 109(9), 093526–093528 (2011).
[CrossRef]

Ray, S. K.

S. Das, K. Das, R. K. Singha, S. Manna, A. Dhar, S. K. Ray, and A. K. Raychaudhuri, “Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands,” Nanoscale Res. Lett. 6(1), 416 (2011).
[CrossRef] [PubMed]

Raychaudhuri, A. K.

S. Das, K. Das, R. K. Singha, S. Manna, A. Dhar, S. K. Ray, and A. K. Raychaudhuri, “Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands,” Nanoscale Res. Lett. 6(1), 416 (2011).
[CrossRef] [PubMed]

Reece, P. J.

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Reinhart, C. F.

M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, “Type II band alignment in Si1-xGex/Si(001) quantum wells: The ubiquitous type I luminescence results from band bending,” Phys. Rev. Lett. 79(2), 269–272 (1997).
[CrossRef]

Sauvage, S.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J. M. Lourtioz, “Strong 1.3–1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[CrossRef]

Schmidt, O. G.

M. W. Dashiell, U. Denker, C. Muller, G. Costantini, C. Manzano, K. Kern, and O. G. Schmidt, “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,” Appl. Phys. Lett. 80(7), 1279–1281 (2002).
[CrossRef]

Shaleev, M.

M. Shaleev, A. Novikov, N. Baydakova, A. Yablonskiy, O. Kuznetsov, Y. Drozdov, D. Lobanov, and Z. Krasilnik, “Narrow photoluminescence peak from Ge(Si) islands embedded between tensile-strained Si layers,” Phys. Status Solidi C, 1055–1059 (2011).

Shaleev, M. V.

Y. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, “Comparative analysis of photo- and electroluminescence of multilayer structures with Ge(Si)/Si(001) self-assembled islands,” Thin Solid Films 517(1), 398–400 (2008).
[CrossRef]

Shengurov, D. V.

Y. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, “Comparative analysis of photo- and electroluminescence of multilayer structures with Ge(Si)/Si(001) self-assembled islands,” Thin Solid Films 517(1), 398–400 (2008).
[CrossRef]

Shi, W. H.

W. H. Shi, C. B. Li, L. P. Luo, B. W. Cheng, and Q. M. Wang, “Growth of Ge quantum dot mediated by boron on Ge wetting layer,” J. Cryst. Growth 279(3-4), 329–334 (2005).
[CrossRef]

Shiraki, Y.

J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18(13), 13945–13950 (2010).
[CrossRef] [PubMed]

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
[CrossRef]

Shmagin, V. B.

Y. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, “Comparative analysis of photo- and electroluminescence of multilayer structures with Ge(Si)/Si(001) self-assembled islands,” Thin Solid Films 517(1), 398–400 (2008).
[CrossRef]

Singha, R. K.

S. Das, K. Das, R. K. Singha, S. Manna, A. Dhar, S. K. Ray, and A. K. Raychaudhuri, “Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands,” Nanoscale Res. Lett. 6(1), 416 (2011).
[CrossRef] [PubMed]

Stangl, J.

M. Meduňa, O. Caha, M. Keplinger, J. Stangl, G. Bauer, G. Mussler, and D. Grützmacher, “Interdiffusion in Ge rich SiGe/Ge multilayers studied by in situ diffraction,” Phys. Status Solidi A 206(8), 1775–1779 (2009).
[CrossRef]

J. Stangl, V. Holy, and G. Bauer, “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76(3), 725–783 (2004).
[CrossRef]

Su, S.

Z. Liu, B. Cheng, W. Hu, S. Su, C. Li, and Q. Wang, “Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature,” Nanoscale Res. Lett. 7(1), 383 (2012).
[CrossRef] [PubMed]

W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, “Electroluminescence from Ge on Si substrate at room temperature,” Appl. Phys. Lett. 95(9), 092102 (2009).
[CrossRef]

Suen, Y. W.

Y. H. Peng, C. H. Hsu, C. H. Kuan, C. W. Liu, P. S. Chen, M. J. Tsai, and Y. W. Suen, “The evolution of electroluminescence in Ge quantum-dot diodes with the fold number,” Appl. Phys. Lett. 85(25), 6107–6109 (2004).
[CrossRef]

Sun, X.

Sunamura, H.

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
[CrossRef]

Takeda, Y.

Thewalt, M. L. W.

M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, “Type II band alignment in Si1-xGex/Si(001) quantum wells: The ubiquitous type I luminescence results from band bending,” Phys. Rev. Lett. 79(2), 269–272 (1997).
[CrossRef]

Tsai, M. J.

Y. H. Peng, C. H. Hsu, C. H. Kuan, C. W. Liu, P. S. Chen, M. J. Tsai, and Y. W. Suen, “The evolution of electroluminescence in Ge quantum-dot diodes with the fold number,” Appl. Phys. Lett. 85(25), 6107–6109 (2004).
[CrossRef]

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
[CrossRef]

Tsang, J. C.

P. M. Mooney, F. H. Dacol, J. C. Tsang, and J. O. Chu, “Raman scattering analysis of relaxed GexSi1−x alloy layers,” Appl. Phys. Lett. 62(17), 2069–2071 (1993).
[CrossRef]

Usami, N.

Vahala, K. J.

K. J. Vahala and C. E. Zah, “Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions,” Appl. Phys. Lett. 52(23), 1945–1947 (1988).
[CrossRef]

Volodin, V. A.

V. A. Volodin, A. I. Yakimov, A. V. Dvurechenskii, M. D. Efremov, A. I. Nikiforov, E. I. Gatskevich, G. D. Ivlev, and G. Y. Mikhalev, “Modification of quantum dots in Ge/Si nanostructures by pulsed laser irradiation,” Semiconductors 40(2), 202–209 (2006).
[CrossRef]

Wang, A.

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Wang, K. L.

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74(2), 185–187 (1999).
[CrossRef]

Wang, Q.

Z. Liu, B. Cheng, W. Hu, S. Su, C. Li, and Q. Wang, “Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature,” Nanoscale Res. Lett. 7(1), 383 (2012).
[CrossRef] [PubMed]

W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, “Electroluminescence from Ge on Si substrate at room temperature,” Appl. Phys. Lett. 95(9), 092102 (2009).
[CrossRef]

Wang, Q. M.

W. H. Shi, C. B. Li, L. P. Luo, B. W. Cheng, and Q. M. Wang, “Growth of Ge quantum dot mediated by boron on Ge wetting layer,” J. Cryst. Growth 279(3-4), 329–334 (2005).
[CrossRef]

Wolk, J. A.

M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, “Type II band alignment in Si1-xGex/Si(001) quantum wells: The ubiquitous type I luminescence results from band bending,” Phys. Rev. Lett. 79(2), 269–272 (1997).
[CrossRef]

Wu, W. G.

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74(2), 185–187 (1999).
[CrossRef]

Xia, J.

Xue, C.

W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, “Electroluminescence from Ge on Si substrate at room temperature,” Appl. Phys. Lett. 95(9), 092102 (2009).
[CrossRef]

Xue, H.

W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, “Electroluminescence from Ge on Si substrate at room temperature,” Appl. Phys. Lett. 95(9), 092102 (2009).
[CrossRef]

Yablonskiy, A.

M. Shaleev, A. Novikov, N. Baydakova, A. Yablonskiy, O. Kuznetsov, Y. Drozdov, D. Lobanov, and Z. Krasilnik, “Narrow photoluminescence peak from Ge(Si) islands embedded between tensile-strained Si layers,” Phys. Status Solidi C, 1055–1059 (2011).

Yablonskiy, A. N.

Y. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, “Comparative analysis of photo- and electroluminescence of multilayer structures with Ge(Si)/Si(001) self-assembled islands,” Thin Solid Films 517(1), 398–400 (2008).
[CrossRef]

Yakimov, A. I.

V. A. Volodin, A. I. Yakimov, A. V. Dvurechenskii, M. D. Efremov, A. I. Nikiforov, E. I. Gatskevich, G. D. Ivlev, and G. Y. Mikhalev, “Modification of quantum dots in Ge/Si nanostructures by pulsed laser irradiation,” Semiconductors 40(2), 202–209 (2006).
[CrossRef]

Yu, C. Y.

C. H. Lin, C. Y. Yu, P. S. Kuo, C. C. Chang, T. H. Guo, and C. W. Liu, “δ-Doped MOS Ge/Si quantum dot/well infrared photodetector,” Thin Solid Films 508(1-2), 389–392 (2006).
[CrossRef]

Yu, Y.

W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, “Electroluminescence from Ge on Si substrate at room temperature,” Appl. Phys. Lett. 95(9), 092102 (2009).
[CrossRef]

Zah, C. E.

K. J. Vahala and C. E. Zah, “Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions,” Appl. Phys. Lett. 52(23), 1945–1947 (1988).
[CrossRef]

Zhao, J.

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (9)

K. J. Vahala and C. E. Zah, “Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions,” Appl. Phys. Lett. 52(23), 1945–1947 (1988).
[CrossRef]

Y. H. Peng, C. H. Hsu, C. H. Kuan, C. W. Liu, P. S. Chen, M. J. Tsai, and Y. W. Suen, “The evolution of electroluminescence in Ge quantum-dot diodes with the fold number,” Appl. Phys. Lett. 85(25), 6107–6109 (2004).
[CrossRef]

M. W. Dashiell, U. Denker, C. Muller, G. Costantini, C. Manzano, K. Kern, and O. G. Schmidt, “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,” Appl. Phys. Lett. 80(7), 1279–1281 (2002).
[CrossRef]

P. M. Mooney, F. H. Dacol, J. C. Tsang, and J. O. Chu, “Raman scattering analysis of relaxed GexSi1−x alloy layers,” Appl. Phys. Lett. 62(17), 2069–2071 (1993).
[CrossRef]

W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, “Electroluminescence from Ge on Si substrate at room temperature,” Appl. Phys. Lett. 95(9), 092102 (2009).
[CrossRef]

K. Drozdowicz-Tomsia, E. M. Goldys, L. Fu, and C. Jagadish, “Doping effect on dark currents in In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(11), 113510 (2006).
[CrossRef]

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74(2), 185–187 (1999).
[CrossRef]

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003).
[CrossRef]

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
[CrossRef]

J. Appl. Phys. (2)

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J. M. Lourtioz, “Strong 1.3–1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[CrossRef]

B. Cho, J. Bareno, I. Petrov, and J. E. Greene, “Enhanced Ge/Si(001) island areal density and self-organization due to P predeposition,” J. Appl. Phys. 109(9), 093526–093528 (2011).
[CrossRef]

J. Cryst. Growth (1)

W. H. Shi, C. B. Li, L. P. Luo, B. W. Cheng, and Q. M. Wang, “Growth of Ge quantum dot mediated by boron on Ge wetting layer,” J. Cryst. Growth 279(3-4), 329–334 (2005).
[CrossRef]

J. Phys. D Appl. Phys. (1)

X. C. Liu and D. R. Leadley, “Silicon-germanium interdiffusion in strained Ge/SiGe multiple quantum well structures,” J. Phys. D Appl. Phys. 43(50), 505303 (2010).
[CrossRef]

Nanoscale Res. Lett. (2)

Z. Liu, B. Cheng, W. Hu, S. Su, C. Li, and Q. Wang, “Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature,” Nanoscale Res. Lett. 7(1), 383 (2012).
[CrossRef] [PubMed]

S. Das, K. Das, R. K. Singha, S. Manna, A. Dhar, S. K. Ray, and A. K. Raychaudhuri, “Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands,” Nanoscale Res. Lett. 6(1), 416 (2011).
[CrossRef] [PubMed]

Nature (2)

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353(6342), 335–338 (1991).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, “Type II band alignment in Si1-xGex/Si(001) quantum wells: The ubiquitous type I luminescence results from band bending,” Phys. Rev. Lett. 79(2), 269–272 (1997).
[CrossRef]

Phys. Status Solidi (1)

M. Shaleev, A. Novikov, N. Baydakova, A. Yablonskiy, O. Kuznetsov, Y. Drozdov, D. Lobanov, and Z. Krasilnik, “Narrow photoluminescence peak from Ge(Si) islands embedded between tensile-strained Si layers,” Phys. Status Solidi C, 1055–1059 (2011).

Phys. Status Solidi A (1)

M. Meduňa, O. Caha, M. Keplinger, J. Stangl, G. Bauer, G. Mussler, and D. Grützmacher, “Interdiffusion in Ge rich SiGe/Ge multilayers studied by in situ diffraction,” Phys. Status Solidi A 206(8), 1775–1779 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

J. Stangl, V. Holy, and G. Bauer, “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76(3), 725–783 (2004).
[CrossRef]

Semiconductors (1)

V. A. Volodin, A. I. Yakimov, A. V. Dvurechenskii, M. D. Efremov, A. I. Nikiforov, E. I. Gatskevich, G. D. Ivlev, and G. Y. Mikhalev, “Modification of quantum dots in Ge/Si nanostructures by pulsed laser irradiation,” Semiconductors 40(2), 202–209 (2006).
[CrossRef]

Thin Solid Films (2)

C. H. Lin, C. Y. Yu, P. S. Kuo, C. C. Chang, T. H. Guo, and C. W. Liu, “δ-Doped MOS Ge/Si quantum dot/well infrared photodetector,” Thin Solid Films 508(1-2), 389–392 (2006).
[CrossRef]

Y. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, “Comparative analysis of photo- and electroluminescence of multilayer structures with Ge(Si)/Si(001) self-assembled islands,” Thin Solid Films 517(1), 398–400 (2008).
[CrossRef]

Other (3)

See support documents for PL spectra of 4-bilayer samples with undoped, phosphorus-doped, and boron-doped GeSi islands.

J. I. Pankove, Electroluminescence (Springer, Berlin, 1977).

See support documents for the Raman spectra of two samples.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Typical cross-sectional STEM image of the multilayer GeSi islands on Si(001) substrates. The extra 30 nm Si space can be seen in the middle of the multilayer structure, (b) (Color online) The cross-sectional view of the device.

Fig. 2
Fig. 2

Room temperature PL spectra of samples. (a) the laser power is 1 mW, (b) the laser power is 10 mW. The spectra decrease around 0.85 eV induced by the color filter of instrumentation is marked by a line.

Fig. 3
Fig. 3

The PL spectra of the 20-bilayers phosphorus-doped GeSi islands sample with 10 mW laser pump power at different temperatures (30°C~60°C).

Fig. 4
Fig. 4

The typical I-V characteristic of the devices.

Fig. 5
Fig. 5

(a) The Room temperature EL spectra of devices under 1.1 V forward bias, (b) The typical current dependent integrated EL intensity of devices.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E= E gap,Si Δ E v +Δ E ( nmk )
Δ E ( nmk ) = π 2 2 m * ( n 2 h 2 + m 2 w 2 + k 2 w 2 )

Metrics