Abstract

We report the fabrication and characterization of straight and serpentine low loss trapezoidal silica waveguides integrated on a silicon substrate. The waveguide channel was defined using a dual photo-lithography and buffered HF etching and isolated from the silicon substrate using an isotropic silicon etchant. The waveguide is air-clad and thus has a core-cladding effective index contrast of approximately 25%. Measured at 658, 980 and 1550nm, the propagation loss was found to be 0.69, 0.59, and 0.41dB/cm respectively, with a critical bending radius less than 375μm. The waveguide’s polarization behavior was investigated both theoretically and experimentally. Additionally, the output power shows a linear response with input power up to 200mW.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
  2. A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
  3. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
  4. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
  5. T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
  6. T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6, 38–45 (2000).
  7. G. L. Bona, R. Germann, and B. J. Offrein, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Develop. 47, 239–249 (2003).
  8. X. Zhang and A. M. Armani, “Suspended bridge-like silica 2x2 beam splitter on silicon,” Opt. Lett. 36, 3012–3014 (2011).
  9. A. J. Maker and A. M. Armani, “Low loss silica on silicon waveguides,” Opt. Lett. 36, 3729–3731 (2011).
  10. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
  11. T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1 (2012).
  12. F. Ladouceur and E. Labeye, “A new general approach to optical waveguide path design,” J. Lightwave Technol. 13, 481–492 (1995).
  13. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
  14. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
  15. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1997).
  16. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971).
  17. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 mm,” Opt. Lett. 21, 1966–1968 (1996).
  18. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
  19. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
  20. A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: integrated waveguides as enabling detection elements for lab-on-a-chip biosensing applications,” Analyst (Lond.) 136, 227–236 (2011).

2012 (1)

T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1 (2012).

2011 (6)

2010 (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).

2007 (1)

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).

2004 (1)

2003 (2)

G. L. Bona, R. Germann, and B. J. Offrein, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Develop. 47, 239–249 (2003).

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).

2000 (1)

T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6, 38–45 (2000).

1998 (1)

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).

1996 (1)

1995 (1)

F. Ladouceur and E. Labeye, “A new general approach to optical waveguide path design,” J. Lightwave Technol. 13, 481–492 (1995).

1971 (1)

1969 (1)

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).

1965 (1)

Armani, A. M.

Bailey, R. C.

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: integrated waveguides as enabling detection elements for lab-on-a-chip biosensing applications,” Analyst (Lond.) 136, 227–236 (2011).

Bakir, B. B.

C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).

Barton, J. S.

Bauters, J. F.

Bernabe, S.

C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).

Bettiol, A. A.

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).

Blumenthal, D. J.

Bona, G. L.

G. L. Bona, R. Germann, and B. J. Offrein, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Develop. 47, 239–249 (2003).

Boskovic, A.

Bowers, J. E.

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).

Bruinink, C. M.

Chernikov, S. V.

Dai, D.

Fedeli, J.

C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).

Germann, R.

G. L. Bona, R. Germann, and B. J. Offrein, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Develop. 47, 239–249 (2003).

Gruner-Nielsen, L.

Hansuek Lee, T. C.

T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1 (2012).

Heck, M. J. R.

Heideman, R. G.

Himeno, A.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).

Hoffmann, C.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).

John, D.

John, D. D.

Kato, K.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).

Kopp, C.

C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).

Labeye, E.

F. Ladouceur and E. Labeye, “A new general approach to optical waveguide path design,” J. Lightwave Technol. 13, 481–492 (1995).

Ladouceur, F.

F. Ladouceur and E. Labeye, “A new general approach to optical waveguide path design,” J. Lightwave Technol. 13, 481–492 (1995).

Leinse, A.

Levring, O. A.

Li, J.

T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1 (2012).

Maker, A. J.

Malitson, I. H.

Marcatili, E. A. J.

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).

McNab, S.

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).

Miya, T.

T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6, 38–45 (2000).

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).

Offrein, B. J.

G. L. Bona, R. Germann, and B. J. Offrein, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Develop. 47, 239–249 (2003).

Orobtchouk, R.

C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).

Painter, O.

T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1 (2012).

Porte, H.

C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).

Pun, E. Y. B.

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).

Schmitt, K.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).

Schrank, F.

C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).

Sum, T. C.

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).

Taylor, J. R.

Tekin, T.

C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).

Tien, M.-C.

Tien, P. K.

Tung, K. K.

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).

Vahala, K. J.

T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1 (2012).

van Kan, J. A.

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).

Vlasov, Y.

Washburn, A. L.

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: integrated waveguides as enabling detection elements for lab-on-a-chip biosensing applications,” Analyst (Lond.) 136, 227–236 (2011).

Watt, F.

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).

Zhang, X.

Zimmermann, L.

C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).

Analyst (Lond.) (1)

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: integrated waveguides as enabling detection elements for lab-on-a-chip biosensing applications,” Analyst (Lond.) 136, 227–236 (2011).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).

Biosens. Bioelectron. (1)

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).

IBM J. Res. Develop. (1)

G. L. Bona, R. Germann, and B. J. Offrein, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Develop. 47, 239–249 (2003).

IEEE J. Sel. Top. Quantum Electron. (3)

T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6, 38–45 (2000).

C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).

J. Lightwave Technol. (1)

F. Ladouceur and E. Labeye, “A new general approach to optical waveguide path design,” J. Lightwave Technol. 13, 481–492 (1995).

J. Opt. Soc. Am. (1)

Nanoscale (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).

Nat. Commun. (1)

T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1 (2012).

Opt. Express (3)

Opt. Lett. (3)

Other (1)

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fabrication process and scanning electron micrograph (SEM) images of the trapezoidal waveguide. (a) 80μm wide silica trapezoids are defined using photolithography and buffered HF etching.(b) A second photolithography and buffered HF etching are used to create two 8μm trapezoids at each side of the 80-μm trapezoids, and (c) XeF2 etching is used to isotropically undercut the silica.(d) Cross section schematic of the waveguide indicating the critical dimensions. In the present experiments, W = 80μm, w = 64μm and h = 2μm. (e) SEM side view image of a single waveguide, (f) top view image of a pair of waveguides, (g) SEM side view image of a pair of waveguides.

Fig. 2
Fig. 2

Scanning electron micrograph (SEM) images of the curved trapezoidal waveguide. (a) The S-curve waveguide geometry depicting the bending radius (R), which was varied between 125 and 400µm. (b) SEM of the bending section and (c) cleaved end of a curved waveguide device.

Fig. 3
Fig. 3

Finite element method simulation of the electric field distribution (TE mode) of (a) trapezoidal, (b) rectangular waveguide and (c) circular waveguide at 1550nm. (d) Comparison of the intensity of the mode profile along the x (horizontal) direction, normalized to highest intensity in trapezoidal device.

Fig. 4
Fig. 4

Finite-difference time-domain simulation of the electric field intensity bent trapezoidal waveguide with an inner radius of 75μmat 1550nm. The optical field clearly leaks into the silica membrane in-between the two waveguide arms. This leakage is a significant source of loss in the serpentine devices.

Fig. 5
Fig. 5

(a) Measured propagation loss of the trapezoidal silica waveguide at three wavelengths: 658, 980 and 1550nm.(b) Transmission at four different polarization states.

Fig. 6
Fig. 6

Measured bending loss of the trapezoidal silica waveguide at 658, 980 and 1550nm and the FDTD results.

Fig. 7
Fig. 7

The output power of the trapezoidal waveguide shows a linear dependence on the input power up to 200mW.

Tables (1)

Tables Icon

Table 1 Comparison of the Effective Refractive Indices of TE and TM Modes

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α B ( π γ 3 R ) 1/2 ( κ V ) 2 exp( 2 3 ( γ 3 / β g 2 )R )
Loss(dB)=10log( P out P in )
α= σ 2 k 0 2 h β E s 2 E 2 dx Δ n 2
α total = α length + α system + α bend

Metrics