Abstract

Simulations have been performed to compare the system capacity and power dissipation of NRZ, CAP-64 and 64-QAM-OFDM systems over FEC enhanced POF links using LEDs, for both unidirectional and bidirectional transmission. It is shown that CAP-64 outperforms NRZ and 64-QAM-OFDM in terms of system capacity and supports a record high 3.5Gb/s bidirectional and 2.1Gb/s unidirectional transmissions over 50m POF. The CAP-64 transceiver consumes similar power compared with NRZ whilst the 64-QAM-OFDM transceiver consumes about twice as much.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Charbonnier, P. Urvoas, M. Ouzzif, J. L. Masson, J. D. Lambkin, Mo. O’Gorman, and R. Gaudino, “EU project POF-PLUS: Gigabit transmission over 50m of step-index plastic optical fibre for home networking,” OFC/NFOEC09, Paper OWR4.
  2. C. Zerna, J. Sundermeyer, A. Fiederer, N. Verwaal, B. Offenbeck, and N. Weber, “Integrated PAM2 decision feedback equalizer for Gigabit Ethernet over standard SI-POF using red LED,” ECOC 2010, Paper We.6.B.4.
  3. F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “PAM-4 Signalling for Gigabit transmission over standard step-index plastic optical fibre using light emitting diodes,” ECOC08, Paper We.2.A.3.
  4. S. C. J. Lee, F. Breyer, D. Cárdenas, S. Randel, and T. Koonen, “Real-time implementation of a 1.25Gb/s DMT transmitter for robust and low-cost LED-based plastic optical fiber applications,” ECOC2009, Paper 3.5.4.
  5. L. Geng, R. V. Penty, I. H. White, and D. G. Cunningham, “FEC-free 50 m 1.5 Gb/s plastic optical fibre link using CAP modulation for home networks,” ECOC 2012, Paper Th.1.B.4.
  6. J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for Datacommunication Applications,” IEEE OI 2012, Paper MA2.
  7. J. J. Werner, Tutorial on carrierless AM/PM (ANSI X3T9.5 TP/PMD Working Group, 1992 & 1993).
  8. J. L. Wei, C. Sánchez, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Significant improvements in optical power budgets of real-time optical OFDM PON systems,” Opt. Express 18(20), 20732–20745 (2010).
    [CrossRef] [PubMed]
  9. W. Shieh and I. Djordjevic, Orthogonal Frequency Division Multiplexing for Optical Communications (Elsevier, 2010).
  10. X. Q. Jin, J. L. Wei, R. P. Giddings, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
    [CrossRef]
  11. L. Biard and D. Noguet, “Reed-Solomon codes for low power communications,” J. Commun. 3, 13–21 (2008).
  12. J. Lee, M.-S. Chen, and H.-D. Wang, “Design and comparison of three 20Gb/s backplane transceivers for Duobinary, PAM4, and NRZ data,” IEEE J. Solid-state Circuits 43(9), 2120–2133 (2008).
    [CrossRef]
  13. P. A. Milder, R. Bouziane, R. Koutsoyannis, C. R. Berger, Y. Benlachtar, R. I. Killey, M. Glick, and J. C. Hoe, “Design and simulation of 25 Gb/s optical OFDM transceiver ASICs,” Opt. Express 19(26), B337–B342 (2011).
    [CrossRef] [PubMed]
  14. E. Alpman, H. Lakdawala, L. R. Carley, and K. Soumyanath, “A 1.1V 50mW 2.5GS/s 7b time-interleaved C-2C SAR ADC in 45nm LP digital CMOS,” ISSCC09, 76–78, (2009).

2011 (2)

X. Q. Jin, J. L. Wei, R. P. Giddings, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

P. A. Milder, R. Bouziane, R. Koutsoyannis, C. R. Berger, Y. Benlachtar, R. I. Killey, M. Glick, and J. C. Hoe, “Design and simulation of 25 Gb/s optical OFDM transceiver ASICs,” Opt. Express 19(26), B337–B342 (2011).
[CrossRef] [PubMed]

2010 (1)

2008 (2)

L. Biard and D. Noguet, “Reed-Solomon codes for low power communications,” J. Commun. 3, 13–21 (2008).

J. Lee, M.-S. Chen, and H.-D. Wang, “Design and comparison of three 20Gb/s backplane transceivers for Duobinary, PAM4, and NRZ data,” IEEE J. Solid-state Circuits 43(9), 2120–2133 (2008).
[CrossRef]

Benlachtar, Y.

Berger, C. R.

Biard, L.

L. Biard and D. Noguet, “Reed-Solomon codes for low power communications,” J. Commun. 3, 13–21 (2008).

Bouziane, R.

Chen, M.-S.

J. Lee, M.-S. Chen, and H.-D. Wang, “Design and comparison of three 20Gb/s backplane transceivers for Duobinary, PAM4, and NRZ data,” IEEE J. Solid-state Circuits 43(9), 2120–2133 (2008).
[CrossRef]

Giddings, R. P.

X. Q. Jin, J. L. Wei, R. P. Giddings, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

J. L. Wei, C. Sánchez, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Significant improvements in optical power budgets of real-time optical OFDM PON systems,” Opt. Express 18(20), 20732–20745 (2010).
[CrossRef] [PubMed]

Glick, M.

Hoe, J. C.

Hugues-Salas, E.

Jin, X. Q.

X. Q. Jin, J. L. Wei, R. P. Giddings, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

Killey, R. I.

Koutsoyannis, R.

Lee, J.

J. Lee, M.-S. Chen, and H.-D. Wang, “Design and comparison of three 20Gb/s backplane transceivers for Duobinary, PAM4, and NRZ data,” IEEE J. Solid-state Circuits 43(9), 2120–2133 (2008).
[CrossRef]

Milder, P. A.

Noguet, D.

L. Biard and D. Noguet, “Reed-Solomon codes for low power communications,” J. Commun. 3, 13–21 (2008).

Sánchez, C.

Tang, J. M.

X. Q. Jin, J. L. Wei, R. P. Giddings, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

J. L. Wei, C. Sánchez, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Significant improvements in optical power budgets of real-time optical OFDM PON systems,” Opt. Express 18(20), 20732–20745 (2010).
[CrossRef] [PubMed]

Walker, S.

X. Q. Jin, J. L. Wei, R. P. Giddings, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

Wang, H.-D.

J. Lee, M.-S. Chen, and H.-D. Wang, “Design and comparison of three 20Gb/s backplane transceivers for Duobinary, PAM4, and NRZ data,” IEEE J. Solid-state Circuits 43(9), 2120–2133 (2008).
[CrossRef]

Wei, J. L.

X. Q. Jin, J. L. Wei, R. P. Giddings, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

J. L. Wei, C. Sánchez, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Significant improvements in optical power budgets of real-time optical OFDM PON systems,” Opt. Express 18(20), 20732–20745 (2010).
[CrossRef] [PubMed]

IEEE J. Solid-state Circuits (1)

J. Lee, M.-S. Chen, and H.-D. Wang, “Design and comparison of three 20Gb/s backplane transceivers for Duobinary, PAM4, and NRZ data,” IEEE J. Solid-state Circuits 43(9), 2120–2133 (2008).
[CrossRef]

IEEE Photonics J. (1)

X. Q. Jin, J. L. Wei, R. P. Giddings, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

J. Commun. (1)

L. Biard and D. Noguet, “Reed-Solomon codes for low power communications,” J. Commun. 3, 13–21 (2008).

Opt. Express (2)

Other (9)

E. Alpman, H. Lakdawala, L. R. Carley, and K. Soumyanath, “A 1.1V 50mW 2.5GS/s 7b time-interleaved C-2C SAR ADC in 45nm LP digital CMOS,” ISSCC09, 76–78, (2009).

W. Shieh and I. Djordjevic, Orthogonal Frequency Division Multiplexing for Optical Communications (Elsevier, 2010).

B. Charbonnier, P. Urvoas, M. Ouzzif, J. L. Masson, J. D. Lambkin, Mo. O’Gorman, and R. Gaudino, “EU project POF-PLUS: Gigabit transmission over 50m of step-index plastic optical fibre for home networking,” OFC/NFOEC09, Paper OWR4.

C. Zerna, J. Sundermeyer, A. Fiederer, N. Verwaal, B. Offenbeck, and N. Weber, “Integrated PAM2 decision feedback equalizer for Gigabit Ethernet over standard SI-POF using red LED,” ECOC 2010, Paper We.6.B.4.

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “PAM-4 Signalling for Gigabit transmission over standard step-index plastic optical fibre using light emitting diodes,” ECOC08, Paper We.2.A.3.

S. C. J. Lee, F. Breyer, D. Cárdenas, S. Randel, and T. Koonen, “Real-time implementation of a 1.25Gb/s DMT transmitter for robust and low-cost LED-based plastic optical fiber applications,” ECOC2009, Paper 3.5.4.

L. Geng, R. V. Penty, I. H. White, and D. G. Cunningham, “FEC-free 50 m 1.5 Gb/s plastic optical fibre link using CAP modulation for home networks,” ECOC 2012, Paper Th.1.B.4.

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for Datacommunication Applications,” IEEE OI 2012, Paper MA2.

J. J. Werner, Tutorial on carrierless AM/PM (ANSI X3T9.5 TP/PMD Working Group, 1992 & 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of (a) CAP-64 system and (b) 64-QAM-OFDM system.

Fig. 2
Fig. 2

Maximum bit rate versus POF length using FEC(10−3,10−12). U: Unidirectional; B: Bidirectional.

Fig. 3
Fig. 3

Estimated transceiver power dissipation for various transceivers.

Tables (1)

Tables Icon

Table 1 Optical transceiver and fibre link parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r k = H k p k c k + n k
c ^ k = r k / H ^ k r k /( p k H k )= c k + n k /( p k H k )
BE R 64QAM = 1 N/21 i=2 N/2 BE R i = 1 N/21 i=2 N/2 7 24 erfc( 3SN R k p k 2 H k 2 126 )
max{ p k }/min{ p k }4

Metrics