Abstract

When the tip of a fluoride glass fiber is exposed to ambient air, water vapor reacts with the glass constituents, increasing the OH contaminants at the surface. These OH impurities then diffuse inside the glass according to Fick’s laws. Laser radiation at around 3µm is strongly absorbed by the OH contaminants, causing local heating of the fiber tip resulting in an increase of the diffusion process which ultimately leads to fiber tip destruction. We accurately model this phenomenon by combining the diffusion theory with a basic thermal equation. Experimental measurements are in agreement with the model predictions for a good range of operating conditions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Moulson and J. P. Roberts, “Water in silica glass,” Trans. Faraday Soc. 57, 1208–1216 (1961).
    [CrossRef]
  2. P. L. Studt, J. F. Shackelford, and R. M. Fulrath, “Solubility of gases in glass-a monatomic model,” J. Appl. Phys. 41(7), 2777–2780 (1970).
    [CrossRef]
  3. J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972).
    [CrossRef]
  4. R. H. Doremus, D. Murphy, N. P. Bansal, W. A. Lanford, and C. Burman, “Reaction of zirconium fluoride glass with water: kinetics of dissolution,” J. Mater. Sci. 20(12), 4445–4453 (1985).
    [CrossRef]
  5. R. H. Doremus, N. P. Bansal, T. Bradner, and D. Murphy, “Zirconium fluoride glass: surface crystals formed by reaction with water,” J. Mater. Sci. Lett. 3(6), 484–488 (1984).
    [CrossRef]
  6. C. J. Simmons, H. Sutter, J. H. Simmons, and D. C. Tran, “Aqueous corrosion studies of a fluorozirconate glass,” Mater. Res. Bull. 17(9), 1203–1210 (1982).
    [CrossRef]
  7. C. J. Simmons and J. H. Simmons, “Chemical durability of fluoride glasses: I, reaction of fluorozirconate glasses with water,” J. Am. Ceram. Soc. 69(9), 661–669 (1986).
    [CrossRef]
  8. B. Hueber, G. H. Frischat, A. Maldener, O. Dersch, and F. Rauch, “Initial corrosion stages of a heavy metal fluoride glass in water,” J. Non-Cryst. Solids 256–257, 130–134 (1999).
    [CrossRef]
  9. A. P. Rizzato, C. V. Santilli, S. H. Pulcinelli, Y. Messaddeq, A. F. Craievich, and P. Hammer, “Study on the initial stages of water corrosion of fluorozirconate glasses,” J. Non-Cryst. Solids 348, 38–43 (2004).
    [CrossRef]
  10. M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71(4), 219–224 (1988).
    [CrossRef]
  11. D. Tregoat, M. J. Liepmann, G. Fonteneau, J. Lucas, and J. D. Mackenzie, “Comparative corrosion mechanism of ThF4 and ZrF4 based fluoride glasses in aqueous solutions,” J. Non-Cryst. Solids 83(3), 282–296 (1986).
    [CrossRef]
  12. C. J. Simmons, “Chemical durability of fluoride glasses: II, reaction of barium-thorium-based glasses with water,” J. Am. Ceram. Soc. 70(4), 295–300 (1987).
    [CrossRef]
  13. G. H. Frischat, B. Hueber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glasses in water,” J. Non-Cryst. Solids 284(1-3), 105–109 (2001).
    [CrossRef]
  14. C. J. Simmons, “Chemical durability of fluoride glasses: III, the effect of solution pH,” J. Am. Ceram. Soc. 70(9), 654–661 (1987).
    [CrossRef]
  15. M. Robinson and M. G. Drexhage, “A phenomenological comparison of some heavy metal fluoride glasses in water environments,” Mater. Res. Bull. 18(9), 1101–1112 (1983).
    [CrossRef]
  16. D. Trégoat, G. Fonteneau, C. T. Moynihan, and J. Lucas, “Surface -OH profile from reaction of a heavy-metal fluoride glass with atmospheric water,” J. Am. Ceram. Soc. 68, 171–173 (1985).
  17. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [CrossRef]
  18. M. Bernier, D. Faucher, N. Caron, and R. Vallée, “Highly stable and efficient erbium-doped 2.8 μ all fiber laser,” Opt. Express 17(19), 16941–16946 (2009).
    [CrossRef] [PubMed]
  19. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 36(15), 2812–2814 (2011).
    [CrossRef] [PubMed]
  20. D. Faucher, M. Bernier, N. Caron, and R. Vallée, “Erbium-doped all-fiber laser at 2.94 microm,” Opt. Lett. 34(21), 3313–3315 (2009).
    [CrossRef] [PubMed]
  21. J. P. Bromberg, Physical Chemistry, 2nd ed. (Allyn and Bacon, 1984), p. 949.

2012 (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[CrossRef]

2011 (1)

2009 (2)

2004 (1)

A. P. Rizzato, C. V. Santilli, S. H. Pulcinelli, Y. Messaddeq, A. F. Craievich, and P. Hammer, “Study on the initial stages of water corrosion of fluorozirconate glasses,” J. Non-Cryst. Solids 348, 38–43 (2004).
[CrossRef]

2001 (1)

G. H. Frischat, B. Hueber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glasses in water,” J. Non-Cryst. Solids 284(1-3), 105–109 (2001).
[CrossRef]

1999 (1)

B. Hueber, G. H. Frischat, A. Maldener, O. Dersch, and F. Rauch, “Initial corrosion stages of a heavy metal fluoride glass in water,” J. Non-Cryst. Solids 256–257, 130–134 (1999).
[CrossRef]

1988 (1)

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71(4), 219–224 (1988).
[CrossRef]

1987 (2)

C. J. Simmons, “Chemical durability of fluoride glasses: II, reaction of barium-thorium-based glasses with water,” J. Am. Ceram. Soc. 70(4), 295–300 (1987).
[CrossRef]

C. J. Simmons, “Chemical durability of fluoride glasses: III, the effect of solution pH,” J. Am. Ceram. Soc. 70(9), 654–661 (1987).
[CrossRef]

1986 (2)

D. Tregoat, M. J. Liepmann, G. Fonteneau, J. Lucas, and J. D. Mackenzie, “Comparative corrosion mechanism of ThF4 and ZrF4 based fluoride glasses in aqueous solutions,” J. Non-Cryst. Solids 83(3), 282–296 (1986).
[CrossRef]

C. J. Simmons and J. H. Simmons, “Chemical durability of fluoride glasses: I, reaction of fluorozirconate glasses with water,” J. Am. Ceram. Soc. 69(9), 661–669 (1986).
[CrossRef]

1985 (2)

R. H. Doremus, D. Murphy, N. P. Bansal, W. A. Lanford, and C. Burman, “Reaction of zirconium fluoride glass with water: kinetics of dissolution,” J. Mater. Sci. 20(12), 4445–4453 (1985).
[CrossRef]

D. Trégoat, G. Fonteneau, C. T. Moynihan, and J. Lucas, “Surface -OH profile from reaction of a heavy-metal fluoride glass with atmospheric water,” J. Am. Ceram. Soc. 68, 171–173 (1985).

1984 (1)

R. H. Doremus, N. P. Bansal, T. Bradner, and D. Murphy, “Zirconium fluoride glass: surface crystals formed by reaction with water,” J. Mater. Sci. Lett. 3(6), 484–488 (1984).
[CrossRef]

1983 (1)

M. Robinson and M. G. Drexhage, “A phenomenological comparison of some heavy metal fluoride glasses in water environments,” Mater. Res. Bull. 18(9), 1101–1112 (1983).
[CrossRef]

1982 (1)

C. J. Simmons, H. Sutter, J. H. Simmons, and D. C. Tran, “Aqueous corrosion studies of a fluorozirconate glass,” Mater. Res. Bull. 17(9), 1203–1210 (1982).
[CrossRef]

1972 (1)

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972).
[CrossRef]

1970 (1)

P. L. Studt, J. F. Shackelford, and R. M. Fulrath, “Solubility of gases in glass-a monatomic model,” J. Appl. Phys. 41(7), 2777–2780 (1970).
[CrossRef]

1961 (1)

A. J. Moulson and J. P. Roberts, “Water in silica glass,” Trans. Faraday Soc. 57, 1208–1216 (1961).
[CrossRef]

Bansal, N. P.

R. H. Doremus, D. Murphy, N. P. Bansal, W. A. Lanford, and C. Burman, “Reaction of zirconium fluoride glass with water: kinetics of dissolution,” J. Mater. Sci. 20(12), 4445–4453 (1985).
[CrossRef]

R. H. Doremus, N. P. Bansal, T. Bradner, and D. Murphy, “Zirconium fluoride glass: surface crystals formed by reaction with water,” J. Mater. Sci. Lett. 3(6), 484–488 (1984).
[CrossRef]

Bernier, M.

Bradner, T.

R. H. Doremus, N. P. Bansal, T. Bradner, and D. Murphy, “Zirconium fluoride glass: surface crystals formed by reaction with water,” J. Mater. Sci. Lett. 3(6), 484–488 (1984).
[CrossRef]

Burman, C.

R. H. Doremus, D. Murphy, N. P. Bansal, W. A. Lanford, and C. Burman, “Reaction of zirconium fluoride glass with water: kinetics of dissolution,” J. Mater. Sci. 20(12), 4445–4453 (1985).
[CrossRef]

Caron, N.

Craievich, A. F.

A. P. Rizzato, C. V. Santilli, S. H. Pulcinelli, Y. Messaddeq, A. F. Craievich, and P. Hammer, “Study on the initial stages of water corrosion of fluorozirconate glasses,” J. Non-Cryst. Solids 348, 38–43 (2004).
[CrossRef]

Dersch, O.

B. Hueber, G. H. Frischat, A. Maldener, O. Dersch, and F. Rauch, “Initial corrosion stages of a heavy metal fluoride glass in water,” J. Non-Cryst. Solids 256–257, 130–134 (1999).
[CrossRef]

Doremus, R. H.

R. H. Doremus, D. Murphy, N. P. Bansal, W. A. Lanford, and C. Burman, “Reaction of zirconium fluoride glass with water: kinetics of dissolution,” J. Mater. Sci. 20(12), 4445–4453 (1985).
[CrossRef]

R. H. Doremus, N. P. Bansal, T. Bradner, and D. Murphy, “Zirconium fluoride glass: surface crystals formed by reaction with water,” J. Mater. Sci. Lett. 3(6), 484–488 (1984).
[CrossRef]

Drexhage, M. G.

M. Robinson and M. G. Drexhage, “A phenomenological comparison of some heavy metal fluoride glasses in water environments,” Mater. Res. Bull. 18(9), 1101–1112 (1983).
[CrossRef]

Faucher, D.

Fonteneau, G.

D. Tregoat, M. J. Liepmann, G. Fonteneau, J. Lucas, and J. D. Mackenzie, “Comparative corrosion mechanism of ThF4 and ZrF4 based fluoride glasses in aqueous solutions,” J. Non-Cryst. Solids 83(3), 282–296 (1986).
[CrossRef]

D. Trégoat, G. Fonteneau, C. T. Moynihan, and J. Lucas, “Surface -OH profile from reaction of a heavy-metal fluoride glass with atmospheric water,” J. Am. Ceram. Soc. 68, 171–173 (1985).

Frischat, G. H.

G. H. Frischat, B. Hueber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glasses in water,” J. Non-Cryst. Solids 284(1-3), 105–109 (2001).
[CrossRef]

B. Hueber, G. H. Frischat, A. Maldener, O. Dersch, and F. Rauch, “Initial corrosion stages of a heavy metal fluoride glass in water,” J. Non-Cryst. Solids 256–257, 130–134 (1999).
[CrossRef]

Fulrath, R. M.

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972).
[CrossRef]

P. L. Studt, J. F. Shackelford, and R. M. Fulrath, “Solubility of gases in glass-a monatomic model,” J. Appl. Phys. 41(7), 2777–2780 (1970).
[CrossRef]

Hammer, P.

A. P. Rizzato, C. V. Santilli, S. H. Pulcinelli, Y. Messaddeq, A. F. Craievich, and P. Hammer, “Study on the initial stages of water corrosion of fluorozirconate glasses,” J. Non-Cryst. Solids 348, 38–43 (2004).
[CrossRef]

Hashida, M.

Hueber, B.

G. H. Frischat, B. Hueber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glasses in water,” J. Non-Cryst. Solids 284(1-3), 105–109 (2001).
[CrossRef]

B. Hueber, G. H. Frischat, A. Maldener, O. Dersch, and F. Rauch, “Initial corrosion stages of a heavy metal fluoride glass in water,” J. Non-Cryst. Solids 256–257, 130–134 (1999).
[CrossRef]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[CrossRef]

Lanford, W. A.

R. H. Doremus, D. Murphy, N. P. Bansal, W. A. Lanford, and C. Burman, “Reaction of zirconium fluoride glass with water: kinetics of dissolution,” J. Mater. Sci. 20(12), 4445–4453 (1985).
[CrossRef]

Le Toullec, M.

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71(4), 219–224 (1988).
[CrossRef]

Liepmann, M. J.

D. Tregoat, M. J. Liepmann, G. Fonteneau, J. Lucas, and J. D. Mackenzie, “Comparative corrosion mechanism of ThF4 and ZrF4 based fluoride glasses in aqueous solutions,” J. Non-Cryst. Solids 83(3), 282–296 (1986).
[CrossRef]

Lucas, J.

D. Tregoat, M. J. Liepmann, G. Fonteneau, J. Lucas, and J. D. Mackenzie, “Comparative corrosion mechanism of ThF4 and ZrF4 based fluoride glasses in aqueous solutions,” J. Non-Cryst. Solids 83(3), 282–296 (1986).
[CrossRef]

D. Trégoat, G. Fonteneau, C. T. Moynihan, and J. Lucas, “Surface -OH profile from reaction of a heavy-metal fluoride glass with atmospheric water,” J. Am. Ceram. Soc. 68, 171–173 (1985).

Mackenzie, J. D.

D. Tregoat, M. J. Liepmann, G. Fonteneau, J. Lucas, and J. D. Mackenzie, “Comparative corrosion mechanism of ThF4 and ZrF4 based fluoride glasses in aqueous solutions,” J. Non-Cryst. Solids 83(3), 282–296 (1986).
[CrossRef]

Maldener, A.

B. Hueber, G. H. Frischat, A. Maldener, O. Dersch, and F. Rauch, “Initial corrosion stages of a heavy metal fluoride glass in water,” J. Non-Cryst. Solids 256–257, 130–134 (1999).
[CrossRef]

Messaddeq, Y.

A. P. Rizzato, C. V. Santilli, S. H. Pulcinelli, Y. Messaddeq, A. F. Craievich, and P. Hammer, “Study on the initial stages of water corrosion of fluorozirconate glasses,” J. Non-Cryst. Solids 348, 38–43 (2004).
[CrossRef]

Moulson, A. J.

A. J. Moulson and J. P. Roberts, “Water in silica glass,” Trans. Faraday Soc. 57, 1208–1216 (1961).
[CrossRef]

Moynihan, C. T.

D. Trégoat, G. Fonteneau, C. T. Moynihan, and J. Lucas, “Surface -OH profile from reaction of a heavy-metal fluoride glass with atmospheric water,” J. Am. Ceram. Soc. 68, 171–173 (1985).

Murakami, M.

Murphy, D.

R. H. Doremus, D. Murphy, N. P. Bansal, W. A. Lanford, and C. Burman, “Reaction of zirconium fluoride glass with water: kinetics of dissolution,” J. Mater. Sci. 20(12), 4445–4453 (1985).
[CrossRef]

R. H. Doremus, N. P. Bansal, T. Bradner, and D. Murphy, “Zirconium fluoride glass: surface crystals formed by reaction with water,” J. Mater. Sci. Lett. 3(6), 484–488 (1984).
[CrossRef]

Pulcinelli, S. H.

A. P. Rizzato, C. V. Santilli, S. H. Pulcinelli, Y. Messaddeq, A. F. Craievich, and P. Hammer, “Study on the initial stages of water corrosion of fluorozirconate glasses,” J. Non-Cryst. Solids 348, 38–43 (2004).
[CrossRef]

Ramdohr, B.

G. H. Frischat, B. Hueber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glasses in water,” J. Non-Cryst. Solids 284(1-3), 105–109 (2001).
[CrossRef]

Rauch, F.

B. Hueber, G. H. Frischat, A. Maldener, O. Dersch, and F. Rauch, “Initial corrosion stages of a heavy metal fluoride glass in water,” J. Non-Cryst. Solids 256–257, 130–134 (1999).
[CrossRef]

Rizzato, A. P.

A. P. Rizzato, C. V. Santilli, S. H. Pulcinelli, Y. Messaddeq, A. F. Craievich, and P. Hammer, “Study on the initial stages of water corrosion of fluorozirconate glasses,” J. Non-Cryst. Solids 348, 38–43 (2004).
[CrossRef]

Roberts, J. P.

A. J. Moulson and J. P. Roberts, “Water in silica glass,” Trans. Faraday Soc. 57, 1208–1216 (1961).
[CrossRef]

Robinson, M.

M. Robinson and M. G. Drexhage, “A phenomenological comparison of some heavy metal fluoride glasses in water environments,” Mater. Res. Bull. 18(9), 1101–1112 (1983).
[CrossRef]

Sakabe, S.

Santilli, C. V.

A. P. Rizzato, C. V. Santilli, S. H. Pulcinelli, Y. Messaddeq, A. F. Craievich, and P. Hammer, “Study on the initial stages of water corrosion of fluorozirconate glasses,” J. Non-Cryst. Solids 348, 38–43 (2004).
[CrossRef]

Shackelford, J. F.

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972).
[CrossRef]

P. L. Studt, J. F. Shackelford, and R. M. Fulrath, “Solubility of gases in glass-a monatomic model,” J. Appl. Phys. 41(7), 2777–2780 (1970).
[CrossRef]

Shimizu, S.

Simmons, C. J.

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71(4), 219–224 (1988).
[CrossRef]

C. J. Simmons, “Chemical durability of fluoride glasses: III, the effect of solution pH,” J. Am. Ceram. Soc. 70(9), 654–661 (1987).
[CrossRef]

C. J. Simmons, “Chemical durability of fluoride glasses: II, reaction of barium-thorium-based glasses with water,” J. Am. Ceram. Soc. 70(4), 295–300 (1987).
[CrossRef]

C. J. Simmons and J. H. Simmons, “Chemical durability of fluoride glasses: I, reaction of fluorozirconate glasses with water,” J. Am. Ceram. Soc. 69(9), 661–669 (1986).
[CrossRef]

C. J. Simmons, H. Sutter, J. H. Simmons, and D. C. Tran, “Aqueous corrosion studies of a fluorozirconate glass,” Mater. Res. Bull. 17(9), 1203–1210 (1982).
[CrossRef]

Simmons, J. H.

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71(4), 219–224 (1988).
[CrossRef]

C. J. Simmons and J. H. Simmons, “Chemical durability of fluoride glasses: I, reaction of fluorozirconate glasses with water,” J. Am. Ceram. Soc. 69(9), 661–669 (1986).
[CrossRef]

C. J. Simmons, H. Sutter, J. H. Simmons, and D. C. Tran, “Aqueous corrosion studies of a fluorozirconate glass,” Mater. Res. Bull. 17(9), 1203–1210 (1982).
[CrossRef]

Studt, P. L.

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972).
[CrossRef]

P. L. Studt, J. F. Shackelford, and R. M. Fulrath, “Solubility of gases in glass-a monatomic model,” J. Appl. Phys. 41(7), 2777–2780 (1970).
[CrossRef]

Sutter, H.

C. J. Simmons, H. Sutter, J. H. Simmons, and D. C. Tran, “Aqueous corrosion studies of a fluorozirconate glass,” Mater. Res. Bull. 17(9), 1203–1210 (1982).
[CrossRef]

Tokita, S.

Tran, D. C.

C. J. Simmons, H. Sutter, J. H. Simmons, and D. C. Tran, “Aqueous corrosion studies of a fluorozirconate glass,” Mater. Res. Bull. 17(9), 1203–1210 (1982).
[CrossRef]

Tregoat, D.

D. Tregoat, M. J. Liepmann, G. Fonteneau, J. Lucas, and J. D. Mackenzie, “Comparative corrosion mechanism of ThF4 and ZrF4 based fluoride glasses in aqueous solutions,” J. Non-Cryst. Solids 83(3), 282–296 (1986).
[CrossRef]

Trégoat, D.

D. Trégoat, G. Fonteneau, C. T. Moynihan, and J. Lucas, “Surface -OH profile from reaction of a heavy-metal fluoride glass with atmospheric water,” J. Am. Ceram. Soc. 68, 171–173 (1985).

Vallée, R.

J. Am. Ceram. Soc. (5)

C. J. Simmons and J. H. Simmons, “Chemical durability of fluoride glasses: I, reaction of fluorozirconate glasses with water,” J. Am. Ceram. Soc. 69(9), 661–669 (1986).
[CrossRef]

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71(4), 219–224 (1988).
[CrossRef]

C. J. Simmons, “Chemical durability of fluoride glasses: II, reaction of barium-thorium-based glasses with water,” J. Am. Ceram. Soc. 70(4), 295–300 (1987).
[CrossRef]

C. J. Simmons, “Chemical durability of fluoride glasses: III, the effect of solution pH,” J. Am. Ceram. Soc. 70(9), 654–661 (1987).
[CrossRef]

D. Trégoat, G. Fonteneau, C. T. Moynihan, and J. Lucas, “Surface -OH profile from reaction of a heavy-metal fluoride glass with atmospheric water,” J. Am. Ceram. Soc. 68, 171–173 (1985).

J. Appl. Phys. (2)

P. L. Studt, J. F. Shackelford, and R. M. Fulrath, “Solubility of gases in glass-a monatomic model,” J. Appl. Phys. 41(7), 2777–2780 (1970).
[CrossRef]

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972).
[CrossRef]

J. Mater. Sci. (1)

R. H. Doremus, D. Murphy, N. P. Bansal, W. A. Lanford, and C. Burman, “Reaction of zirconium fluoride glass with water: kinetics of dissolution,” J. Mater. Sci. 20(12), 4445–4453 (1985).
[CrossRef]

J. Mater. Sci. Lett. (1)

R. H. Doremus, N. P. Bansal, T. Bradner, and D. Murphy, “Zirconium fluoride glass: surface crystals formed by reaction with water,” J. Mater. Sci. Lett. 3(6), 484–488 (1984).
[CrossRef]

J. Non-Cryst. Solids (4)

D. Tregoat, M. J. Liepmann, G. Fonteneau, J. Lucas, and J. D. Mackenzie, “Comparative corrosion mechanism of ThF4 and ZrF4 based fluoride glasses in aqueous solutions,” J. Non-Cryst. Solids 83(3), 282–296 (1986).
[CrossRef]

B. Hueber, G. H. Frischat, A. Maldener, O. Dersch, and F. Rauch, “Initial corrosion stages of a heavy metal fluoride glass in water,” J. Non-Cryst. Solids 256–257, 130–134 (1999).
[CrossRef]

A. P. Rizzato, C. V. Santilli, S. H. Pulcinelli, Y. Messaddeq, A. F. Craievich, and P. Hammer, “Study on the initial stages of water corrosion of fluorozirconate glasses,” J. Non-Cryst. Solids 348, 38–43 (2004).
[CrossRef]

G. H. Frischat, B. Hueber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glasses in water,” J. Non-Cryst. Solids 284(1-3), 105–109 (2001).
[CrossRef]

Mater. Res. Bull. (2)

M. Robinson and M. G. Drexhage, “A phenomenological comparison of some heavy metal fluoride glasses in water environments,” Mater. Res. Bull. 18(9), 1101–1112 (1983).
[CrossRef]

C. J. Simmons, H. Sutter, J. H. Simmons, and D. C. Tran, “Aqueous corrosion studies of a fluorozirconate glass,” Mater. Res. Bull. 17(9), 1203–1210 (1982).
[CrossRef]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Trans. Faraday Soc. (1)

A. J. Moulson and J. P. Roberts, “Water in silica glass,” Trans. Faraday Soc. 57, 1208–1216 (1961).
[CrossRef]

Other (1)

J. P. Bromberg, Physical Chemistry, 2nd ed. (Allyn and Bacon, 1984), p. 949.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the fiber degradation phenomenon.

Fig. 2
Fig. 2

Influence of the ambient temperature for a constant output power. The durations are normalized with respect to the tip lifetime for an ambient temperature of 20°C.

Fig. 3
Fig. 3

Temporal temperature evolution of the fiber tip for several output powers. The solid curves are the theoretical predictions and the dots are the experimental data.

Fig. 4
Fig. 4

Determination of the material parameters. t cr =12h and T cr =80°C for this example.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

N( t )= 0 C( x )dx = 2 π C( 0 ) D( T )t
D( t )= D 0 exp[ E a RT ]
N( t )= 2 π C( 0 ) D 0 exp[ E a RT ]t
N( t )= 2 π C( 0 ) D 0 exp[ E a RT( t ) ]dt
T( t ) T amb = R th ( 1exp[ ε( λ )N( t ) ] ) P 0 R th ε( λ )N( t ) P 0
T( t ) T amb = 2 π R th ε( λ ) P 0 C( 0 ) D 0 exp[ E a RT( t ) ]dt
exp[ E a RT( t ) ]dt = π ( 2 D 0 R th ε( λ ) P 0 C( 0 ) ) 2 ( T( t ) T amb ) 2
exp[ E a RT( t ) ]= 2π ( 2 D 0 R th ε( λ ) P 0 C( 0 ) ) 2 ( T( t ) T amb ) dT dt
dt= π 2 ( D 0 R th ε( λ ) P 0 C( 0 ) ) 2 ( T( t ) T amb )exp[ E a RT( t ) ]dT
t= π 2 ( D 0 R th P 0 ε( λ )C( 0 ) ) 2 T amb T ( T T amb )exp[ E a RT ]dT
D 0 R th εC( 0 )= π 2 1 t cr P 0 T amb T cr ( T T amb )exp[ E a RT ]dT

Metrics