Abstract

We report the first room-temperature continuous-wave operation of III-V quantum-dot laser diodes monolithically grown on a Si substrate. Long-wavelength InAs/GaAs quantum-dot structures were fabricated on Ge-on-Si substrates. Room-temperature lasing at a wavelength of 1.28 μm has been achieved with threshold current densities of 163 A/cm2 and 64.3 A/cm2 under continuous-wave and pulsed conditions for ridge-waveguide lasers with as cleaved facets, respectively. The value of 64.3 A/cm2 represents the lowest room-temperature threshold current density for any kind of laser on Si to date.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  2. R. Won, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
    [CrossRef]
  3. D. Liang and J. E. Bowers, “Recent progress in lasers on Si,” Nat. Photonics 4(8), 511–517 (2010).
    [CrossRef]
  4. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [CrossRef]
  5. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetector,” Nat. Photonics 4(8), 527–534 (2010).
    [CrossRef]
  6. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
    [CrossRef]
  7. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [CrossRef]
  8. R. Chen, T. D. Tran, K. Ng, W. Ko, L. Chuang, F. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
    [CrossRef]
  9. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [CrossRef] [PubMed]
  10. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
    [CrossRef] [PubMed]
  11. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
    [CrossRef] [PubMed]
  12. M. Groenert, A. Pitera, R. Ram, and E. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs laser fabricated on Si substrates via relaxed graded GexSi1-x buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
    [CrossRef]
  13. R. Fischer, W. Masselink, J. Klem, T. Henderson, T. McGlinn, M. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
    [CrossRef]
  14. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
    [CrossRef] [PubMed]
  15. T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
    [CrossRef]
  16. M. Currie, S. Samavedam, T. Langdo, C. Leitz, and E. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
    [CrossRef]
  17. G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
    [CrossRef]
  18. M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
    [CrossRef]
  19. R. Beanland, A. Sanchez, D. Childs, K. M. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
    [CrossRef]
  20. I. Sellers, H. Liu, K. Groom, D. Childs, D. Robbins, T. Badcock, M. Hopkinson, D. Mowbray, and M. Skolnick, “1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40(22), 1412–1413 (2004).
    [CrossRef]
  21. D. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–55 (2009).
    [CrossRef]
  22. H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
    [CrossRef]
  23. H. Tanoto, S. F. Yoon, K. L. Lew, W. K. Loke, C. Dohrman, E. A. Fitzgerald, and L. J. Tang, “Electroluminescence and structural characteristics of InAs/In0.1Ga0.9As quantum dots grown on graded Si1−xGex/Si substrate,” Appl. Phys. Lett. 95(14), 141905 (2009).
    [CrossRef]
  24. D. Bordel, D. Guimard, M. Rajesh, M. Nishioka, E. Augendre, L. Clavelier, and Y. Arakawa, “Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band,” Appl. Phys. Lett. 96(4), 043101 (2010).
    [CrossRef]
  25. T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
    [CrossRef]
  26. H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
    [CrossRef]
  27. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012.)
  28. J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
    [CrossRef]
  29. C. Jin, T. Badcock, H. Liu, K. Groom, R. Royce, D. Mowbray, and M. Hopkinson, “Observation and modelling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
    [CrossRef]
  30. T. Badcock, R. Royce, D. Mowbray, M. Skolnick, H. Liu, M. Hopkinson, K. Groom, and Q. Jiang, “Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers,” Appl. Phys. Lett. 90(11), 111102 (2007).
    [CrossRef]

2012 (2)

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[CrossRef] [PubMed]

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

2011 (3)

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

R. Chen, T. D. Tran, K. Ng, W. Ko, L. Chuang, F. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

2010 (6)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

R. Won, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
[CrossRef]

D. Liang and J. E. Bowers, “Recent progress in lasers on Si,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetector,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

D. Bordel, D. Guimard, M. Rajesh, M. Nishioka, E. Augendre, L. Clavelier, and Y. Arakawa, “Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band,” Appl. Phys. Lett. 96(4), 043101 (2010).
[CrossRef]

2009 (3)

H. Tanoto, S. F. Yoon, K. L. Lew, W. K. Loke, C. Dohrman, E. A. Fitzgerald, and L. J. Tang, “Electroluminescence and structural characteristics of InAs/In0.1Ga0.9As quantum dots grown on graded Si1−xGex/Si substrate,” Appl. Phys. Lett. 95(14), 141905 (2009).
[CrossRef]

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
[CrossRef]

D. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–55 (2009).
[CrossRef]

2008 (2)

R. Beanland, A. Sanchez, D. Childs, K. M. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[CrossRef]

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[CrossRef]

2007 (3)

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef] [PubMed]

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

T. Badcock, R. Royce, D. Mowbray, M. Skolnick, H. Liu, M. Hopkinson, K. Groom, and Q. Jiang, “Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers,” Appl. Phys. Lett. 90(11), 111102 (2007).
[CrossRef]

2006 (3)

C. Jin, T. Badcock, H. Liu, K. Groom, R. Royce, D. Mowbray, and M. Hopkinson, “Observation and modelling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

2005 (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

2004 (2)

I. Sellers, H. Liu, K. Groom, D. Childs, D. Robbins, T. Badcock, M. Hopkinson, D. Mowbray, and M. Skolnick, “1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40(22), 1412–1413 (2004).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

2003 (2)

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

M. Groenert, A. Pitera, R. Ram, and E. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs laser fabricated on Si substrates via relaxed graded GexSi1-x buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
[CrossRef]

1998 (1)

M. Currie, S. Samavedam, T. Langdo, C. Leitz, and E. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[CrossRef]

1985 (1)

R. Fischer, W. Masselink, J. Klem, T. Henderson, T. McGlinn, M. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[CrossRef]

Akatsu, T.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Allibert, F.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Arakawa, Y.

D. Bordel, D. Guimard, M. Rajesh, M. Nishioka, E. Augendre, L. Clavelier, and Y. Arakawa, “Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band,” Appl. Phys. Lett. 96(4), 043101 (2010).
[CrossRef]

Augendre, E.

D. Bordel, D. Guimard, M. Rajesh, M. Nishioka, E. Augendre, L. Clavelier, and Y. Arakawa, “Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band,” Appl. Phys. Lett. 96(4), 043101 (2010).
[CrossRef]

Badcock, T.

T. Badcock, R. Royce, D. Mowbray, M. Skolnick, H. Liu, M. Hopkinson, K. Groom, and Q. Jiang, “Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers,” Appl. Phys. Lett. 90(11), 111102 (2007).
[CrossRef]

C. Jin, T. Badcock, H. Liu, K. Groom, R. Royce, D. Mowbray, and M. Hopkinson, “Observation and modelling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

I. Sellers, H. Liu, K. Groom, D. Childs, D. Robbins, T. Badcock, M. Hopkinson, D. Mowbray, and M. Skolnick, “1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40(22), 1412–1413 (2004).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Beanland, R.

R. Beanland, A. Sanchez, D. Childs, K. M. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Bessette, J. T.

Bhattacharya, P.

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

Bordel, D.

D. Bordel, D. Guimard, M. Rajesh, M. Nishioka, E. Augendre, L. Clavelier, and Y. Arakawa, “Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band,” Appl. Phys. Lett. 96(4), 043101 (2010).
[CrossRef]

Boussagol, A.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Bowers, J. E.

Brammertz, G.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[CrossRef]

Cai, Y.

Camacho-Aguilera, R. E.

Campidelli, Y.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Caymax, M.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[CrossRef]

Chang-Hasnain, C.

R. Chen, T. D. Tran, K. Ng, W. Ko, L. Chuang, F. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Chen, H.

D. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–55 (2009).
[CrossRef]

Chen, R.

R. Chen, T. D. Tran, K. Ng, W. Ko, L. Chuang, F. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Childs, D.

R. Beanland, A. Sanchez, D. Childs, K. M. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[CrossRef]

I. Sellers, H. Liu, K. Groom, D. Childs, D. Robbins, T. Badcock, M. Hopkinson, D. Mowbray, and M. Skolnick, “1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40(22), 1412–1413 (2004).
[CrossRef]

Chuang, L.

R. Chen, T. D. Tran, K. Ng, W. Ko, L. Chuang, F. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Clavelier, L.

D. Bordel, D. Guimard, M. Rajesh, M. Nishioka, E. Augendre, L. Clavelier, and Y. Arakawa, “Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band,” Appl. Phys. Lett. 96(4), 043101 (2010).
[CrossRef]

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Cohen, O.

Currie, M.

M. Currie, S. Samavedam, T. Langdo, C. Leitz, and E. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[CrossRef]

David, J.

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Degroote, S.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[CrossRef]

Deguet, C.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Deppe, D.

D. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–55 (2009).
[CrossRef]

Dohrman, C.

H. Tanoto, S. F. Yoon, K. L. Lew, W. K. Loke, C. Dohrman, E. A. Fitzgerald, and L. J. Tang, “Electroluminescence and structural characteristics of InAs/In0.1Ga0.9As quantum dots grown on graded Si1−xGex/Si substrate,” Appl. Phys. Lett. 95(14), 141905 (2009).
[CrossRef]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Fang, A. W.

Fathpour, S.

Fischer, R.

R. Fischer, W. Masselink, J. Klem, T. Henderson, T. McGlinn, M. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[CrossRef]

Fitzgerald, E.

M. Groenert, A. Pitera, R. Ram, and E. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs laser fabricated on Si substrates via relaxed graded GexSi1-x buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
[CrossRef]

M. Currie, S. Samavedam, T. Langdo, C. Leitz, and E. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[CrossRef]

Fitzgerald, E. A.

H. Tanoto, S. F. Yoon, K. L. Lew, W. K. Loke, C. Dohrman, E. A. Fitzgerald, and L. J. Tang, “Electroluminescence and structural characteristics of InAs/In0.1Ga0.9As quantum dots grown on graded Si1−xGex/Si substrate,” Appl. Phys. Lett. 95(14), 141905 (2009).
[CrossRef]

Freisem, S.

D. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–55 (2009).
[CrossRef]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Frith, R.

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Groenert, M.

M. Groenert, A. Pitera, R. Ram, and E. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs laser fabricated on Si substrates via relaxed graded GexSi1-x buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
[CrossRef]

Groom, K.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

T. Badcock, R. Royce, D. Mowbray, M. Skolnick, H. Liu, M. Hopkinson, K. Groom, and Q. Jiang, “Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers,” Appl. Phys. Lett. 90(11), 111102 (2007).
[CrossRef]

C. Jin, T. Badcock, H. Liu, K. Groom, R. Royce, D. Mowbray, and M. Hopkinson, “Observation and modelling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

I. Sellers, H. Liu, K. Groom, D. Childs, D. Robbins, T. Badcock, M. Hopkinson, D. Mowbray, and M. Skolnick, “1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40(22), 1412–1413 (2004).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Groom, K. M.

R. Beanland, A. Sanchez, D. Childs, K. M. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[CrossRef]

Guimard, D.

D. Bordel, D. Guimard, M. Rajesh, M. Nishioka, E. Augendre, L. Clavelier, and Y. Arakawa, “Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band,” Appl. Phys. Lett. 96(4), 043101 (2010).
[CrossRef]

Gutierrez, M.

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Harrison, C.

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Hartmann, J.-M.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Henderson, T.

R. Fischer, W. Masselink, J. Klem, T. Henderson, T. McGlinn, M. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[CrossRef]

Heyns, M.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[CrossRef]

Hogg, R.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

Hopkinson, M.

R. Beanland, A. Sanchez, D. Childs, K. M. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[CrossRef]

T. Badcock, R. Royce, D. Mowbray, M. Skolnick, H. Liu, M. Hopkinson, K. Groom, and Q. Jiang, “Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers,” Appl. Phys. Lett. 90(11), 111102 (2007).
[CrossRef]

C. Jin, T. Badcock, H. Liu, K. Groom, R. Royce, D. Mowbray, and M. Hopkinson, “Observation and modelling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

I. Sellers, H. Liu, K. Groom, D. Childs, D. Robbins, T. Badcock, M. Hopkinson, D. Mowbray, and M. Skolnick, “1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40(22), 1412–1413 (2004).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Jalali, B.

Jiang, Q.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

T. Badcock, R. Royce, D. Mowbray, M. Skolnick, H. Liu, M. Hopkinson, K. Groom, and Q. Jiang, “Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers,” Appl. Phys. Lett. 90(11), 111102 (2007).
[CrossRef]

Jin, C.

C. Jin, T. Badcock, H. Liu, K. Groom, R. Royce, D. Mowbray, and M. Hopkinson, “Observation and modelling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

Jones, R.

Kernevez, N.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Kimerling, L. C.

Klein, M.

R. Fischer, W. Masselink, J. Klem, T. Henderson, T. McGlinn, M. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[CrossRef]

Klem, J.

R. Fischer, W. Masselink, J. Klem, T. Henderson, T. McGlinn, M. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[CrossRef]

Ko, W.

R. Chen, T. D. Tran, K. Ng, W. Ko, L. Chuang, F. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Langdo, T.

M. Currie, S. Samavedam, T. Langdo, C. Leitz, and E. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[CrossRef]

Lee, A.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

Leitz, C.

M. Currie, S. Samavedam, T. Langdo, C. Leitz, and E. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[CrossRef]

Letertre, F.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Lew, K. L.

H. Tanoto, S. F. Yoon, K. L. Lew, W. K. Loke, C. Dohrman, E. A. Fitzgerald, and L. J. Tang, “Electroluminescence and structural characteristics of InAs/In0.1Ga0.9As quantum dots grown on graded Si1−xGex/Si substrate,” Appl. Phys. Lett. 95(14), 141905 (2009).
[CrossRef]

Leys, M.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[CrossRef]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on Si,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Liu, H.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

R. Beanland, A. Sanchez, D. Childs, K. M. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[CrossRef]

T. Badcock, R. Royce, D. Mowbray, M. Skolnick, H. Liu, M. Hopkinson, K. Groom, and Q. Jiang, “Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers,” Appl. Phys. Lett. 90(11), 111102 (2007).
[CrossRef]

C. Jin, T. Badcock, H. Liu, K. Groom, R. Royce, D. Mowbray, and M. Hopkinson, “Observation and modelling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

I. Sellers, H. Liu, K. Groom, D. Childs, D. Robbins, T. Badcock, M. Hopkinson, D. Mowbray, and M. Skolnick, “1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40(22), 1412–1413 (2004).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetector,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Loke, W. K.

H. Tanoto, S. F. Yoon, K. L. Lew, W. K. Loke, C. Dohrman, E. A. Fitzgerald, and L. J. Tang, “Electroluminescence and structural characteristics of InAs/In0.1Ga0.9As quantum dots grown on graded Si1−xGex/Si substrate,” Appl. Phys. Lett. 95(14), 141905 (2009).
[CrossRef]

Loup, V.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Masselink, W.

R. Fischer, W. Masselink, J. Klem, T. Henderson, T. McGlinn, M. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[CrossRef]

Mazen, F.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Mazur, J. H.

R. Fischer, W. Masselink, J. Klem, T. Henderson, T. McGlinn, M. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[CrossRef]

Mazure, C.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

McGlinn, T.

R. Fischer, W. Masselink, J. Klem, T. Henderson, T. McGlinn, M. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[CrossRef]

Meuris, M.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[CrossRef]

Mi, Z.

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

Michel, J.

Mols, Y.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[CrossRef]

Morkoc, H.

R. Fischer, W. Masselink, J. Klem, T. Henderson, T. McGlinn, M. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[CrossRef]

Mowbray, D.

R. Beanland, A. Sanchez, D. Childs, K. M. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[CrossRef]

T. Badcock, R. Royce, D. Mowbray, M. Skolnick, H. Liu, M. Hopkinson, K. Groom, and Q. Jiang, “Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers,” Appl. Phys. Lett. 90(11), 111102 (2007).
[CrossRef]

C. Jin, T. Badcock, H. Liu, K. Groom, R. Royce, D. Mowbray, and M. Hopkinson, “Observation and modelling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

I. Sellers, H. Liu, K. Groom, D. Childs, D. Robbins, T. Badcock, M. Hopkinson, D. Mowbray, and M. Skolnick, “1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40(22), 1412–1413 (2004).
[CrossRef]

Mowbray, D. J.

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Ng, J.

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Ng, K.

R. Chen, T. D. Tran, K. Ng, W. Ko, L. Chuang, F. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Nishioka, M.

D. Bordel, D. Guimard, M. Rajesh, M. Nishioka, E. Augendre, L. Clavelier, and Y. Arakawa, “Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band,” Appl. Phys. Lett. 96(4), 043101 (2010).
[CrossRef]

Ozgur, G.

D. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–55 (2009).
[CrossRef]

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Paniccia, M. J.

Park, H.

Patel, N.

Pitera, A.

M. Groenert, A. Pitera, R. Ram, and E. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs laser fabricated on Si substrates via relaxed graded GexSi1-x buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
[CrossRef]

Pozzi, F.

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

Raday, O.

Rajesh, M.

D. Bordel, D. Guimard, M. Rajesh, M. Nishioka, E. Augendre, L. Clavelier, and Y. Arakawa, “Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band,” Appl. Phys. Lett. 96(4), 043101 (2010).
[CrossRef]

Ram, R.

M. Groenert, A. Pitera, R. Ram, and E. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs laser fabricated on Si substrates via relaxed graded GexSi1-x buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
[CrossRef]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Richtarch, C.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Robbins, D.

I. Sellers, H. Liu, K. Groom, D. Childs, D. Robbins, T. Badcock, M. Hopkinson, D. Mowbray, and M. Skolnick, “1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40(22), 1412–1413 (2004).
[CrossRef]

Romagnoli, M.

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Rouchon, D.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Royce, R.

T. Badcock, R. Royce, D. Mowbray, M. Skolnick, H. Liu, M. Hopkinson, K. Groom, and Q. Jiang, “Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers,” Appl. Phys. Lett. 90(11), 111102 (2007).
[CrossRef]

C. Jin, T. Badcock, H. Liu, K. Groom, R. Royce, D. Mowbray, and M. Hopkinson, “Observation and modelling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

Samavedam, S.

M. Currie, S. Samavedam, T. Langdo, C. Leitz, and E. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[CrossRef]

Sanchez, A.

R. Beanland, A. Sanchez, D. Childs, K. M. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[CrossRef]

Sanchez, L.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Sedgwick, F.

R. Chen, T. D. Tran, K. Ng, W. Ko, L. Chuang, F. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Seeds, A.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

Sellers, I.

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

I. Sellers, H. Liu, K. Groom, D. Childs, D. Robbins, T. Badcock, M. Hopkinson, D. Mowbray, and M. Skolnick, “1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40(22), 1412–1413 (2004).
[CrossRef]

Sellers, I. R.

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Shavritranuruk, K.

D. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–55 (2009).
[CrossRef]

Signamarcheix, T.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Skolnick, M.

T. Badcock, R. Royce, D. Mowbray, M. Skolnick, H. Liu, M. Hopkinson, K. Groom, and Q. Jiang, “Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers,” Appl. Phys. Lett. 90(11), 111102 (2007).
[CrossRef]

I. Sellers, H. Liu, K. Groom, D. Childs, D. Robbins, T. Badcock, M. Hopkinson, D. Mowbray, and M. Skolnick, “1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40(22), 1412–1413 (2004).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Skolnick, M. S.

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Steer, M.

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Sugawara, M.

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
[CrossRef]

Tang, L. J.

H. Tanoto, S. F. Yoon, K. L. Lew, W. K. Loke, C. Dohrman, E. A. Fitzgerald, and L. J. Tang, “Electroluminescence and structural characteristics of InAs/In0.1Ga0.9As quantum dots grown on graded Si1−xGex/Si substrate,” Appl. Phys. Lett. 95(14), 141905 (2009).
[CrossRef]

Tanoto, H.

H. Tanoto, S. F. Yoon, K. L. Lew, W. K. Loke, C. Dohrman, E. A. Fitzgerald, and L. J. Tang, “Electroluminescence and structural characteristics of InAs/In0.1Ga0.9As quantum dots grown on graded Si1−xGex/Si substrate,” Appl. Phys. Lett. 95(14), 141905 (2009).
[CrossRef]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Tran, T. D.

R. Chen, T. D. Tran, K. Ng, W. Ko, L. Chuang, F. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Tutu, F.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

Usami, M.

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
[CrossRef]

Wang, T.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

Washburn, J.

R. Fischer, W. Masselink, J. Klem, T. Henderson, T. McGlinn, M. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[CrossRef]

Won, R.

R. Won, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
[CrossRef]

Yang, J.

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

Yoon, S. F.

H. Tanoto, S. F. Yoon, K. L. Lew, W. K. Loke, C. Dohrman, E. A. Fitzgerald, and L. J. Tang, “Electroluminescence and structural characteristics of InAs/In0.1Ga0.9As quantum dots grown on graded Si1−xGex/Si substrate,” Appl. Phys. Lett. 95(14), 141905 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

M. Currie, S. Samavedam, T. Langdo, C. Leitz, and E. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Tanoto, S. F. Yoon, K. L. Lew, W. K. Loke, C. Dohrman, E. A. Fitzgerald, and L. J. Tang, “Electroluminescence and structural characteristics of InAs/In0.1Ga0.9As quantum dots grown on graded Si1−xGex/Si substrate,” Appl. Phys. Lett. 95(14), 141905 (2009).
[CrossRef]

D. Bordel, D. Guimard, M. Rajesh, M. Nishioka, E. Augendre, L. Clavelier, and Y. Arakawa, “Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band,” Appl. Phys. Lett. 96(4), 043101 (2010).
[CrossRef]

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

T. Badcock, R. Royce, D. Mowbray, M. Skolnick, H. Liu, M. Hopkinson, K. Groom, and Q. Jiang, “Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers,” Appl. Phys. Lett. 90(11), 111102 (2007).
[CrossRef]

Electron. Lett. (2)

I. Sellers, H. Liu, K. Groom, D. Childs, D. Robbins, T. Badcock, M. Hopkinson, D. Mowbray, and M. Skolnick, “1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40(22), 1412–1413 (2004).
[CrossRef]

D. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–55 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Jin, T. Badcock, H. Liu, K. Groom, R. Royce, D. Mowbray, and M. Hopkinson, “Observation and modelling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

J. Appl. Phys. (3)

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

R. Beanland, A. Sanchez, D. Childs, K. M. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[CrossRef]

R. Fischer, W. Masselink, J. Klem, T. Henderson, T. McGlinn, M. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[CrossRef]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (1)

M. Groenert, A. Pitera, R. Ram, and E. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs laser fabricated on Si substrates via relaxed graded GexSi1-x buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
[CrossRef]

Mater. Sci. Semicond. Process. (1)

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[CrossRef]

Nat. Photonics (8)

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
[CrossRef]

R. Won, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
[CrossRef]

D. Liang and J. E. Bowers, “Recent progress in lasers on Si,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetector,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

R. Chen, T. D. Tran, K. Ng, W. Ko, L. Chuang, F. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Thin Solid Films (1)

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[CrossRef]

Other (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012.)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The schematic shows the layer structure of an InAs/GaAs QD laser diode on a Ge-on-Si substrate.

Fig. 2
Fig. 2

(A) AFM image (1 × 1 μm2) of InAs/GaAs QDs grown on a Ge/Si substrate. (B) Cross-sectional TEM image of laser active region, where InAs QDs are separated by 8-nm InGaAs and 45-nm GaAs spacer layers.

Fig. 3
Fig. 3

(A) Light output power versus current for 3.5-mm-long QD laser diodes grown on a Ge/Si substrate under pulsed mode. The inset shows the emission spectra of InAs/GaAs QD laser for different drive currents below and above threshold. (B) Light output power against current and voltage against current for 3.5-mm-long QD laser diodes grown on a Ge/Si substrate under cw conditions.

Fig. 4
Fig. 4

(A) Light output against current for 3.0-mm-long QD laser diode at various heatsink temperatures under pulsed mode. (B) Light output against current for 3.0-mm-long QD laser diode at various heatsink temperatures under cw conditions.

Metrics