Abstract

We report the spectroscopic characteristics and the laser performances of a low-doped 1% at. Yb:Sc2O3 ceramic sample. Under end- pumping at 933 nm and 968 nm in quasi-CW mode, at 1040.5 nm the laser delivers a maximum output power of 4.3 W and 1.77 W, respectively with a corresponding slope efficiency of 74% and 80%, which are, to the best of our knowledge, the highest value reported in literature for ceramics. We explored the tuning range of the sample, which spans from 1005 nm to 1050.5 nm, and finally we characterized the low losses tunable cavity at 1032 nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II—application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2012).
    [CrossRef]
  2. J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 16116 (2005).
    [CrossRef]
  3. J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
    [CrossRef] [PubMed]
  4. J. Lu, K. Takaichi, T. Uematsu, A. Shirarkawa, M. Musha, K. Ueda, H. Yagi, T. Yanagatani, and A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
    [CrossRef]
  5. U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
    [CrossRef] [PubMed]
  6. J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, “Efficient room temperature continuous-wave operation of an Yb3+:Lu2O3 crystal laser at 1041.6 and 1094.6 nm,” Opt. Express 12(14), 3125–3256 (2004).
    [PubMed]
  7. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express 14(26), 12832–12838 (2006).
    [CrossRef] [PubMed]
  8. A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).
    [CrossRef]
  9. A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
    [CrossRef]
  10. J. Sanghera, J. Frantz, W. Kim, G. Villalobos, C. Baker, B. Shaw, B. Sadowski, M. Hunt, F. Miklos, A. Lutz, and I. Aggarwal, “10% Yb3+-Lu2O3 ceramic laser with 74% efficiency,” Opt. Lett. 36(4), 576–578 (2011).
    [CrossRef] [PubMed]
  11. A. Pirri, G. Toci, and M. Vannini, “First laser oscillation and broad tunability of 1 at. % Yb-doped Sc2O3 and Lu2O3 ceramics,” Opt. Lett. 36(21), 4284–4286 (2011).
    [CrossRef] [PubMed]
  12. V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86(11), 111118 (2005).
    [CrossRef]
  13. K. Takaichi, H. Yagi, P. Becker, A. Shirakawa, K. Ueda, L. Bohaty, T. Yanagitani, and A. A. Kaminskii, “New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxides: two-band tunable CW generation of Yb:Sc2O3 with laser-diode pumping and dispersion of refractive index in the visible and near-IR of undoped Sc2O3,” Laser Phys. Lett. 4(7), 507–510 (2007).
    [CrossRef]
  14. V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239(1), 879–883 (2002).
    [CrossRef]
  15. A. Novoselov, J. H. Mun, R. Simura, A. Yoshikawa, and T. Fukuda, “Micro-pulling-down: a viable approach to the crystal growth of refractory rare-earth sesquioxides,” Inorg. Mater. 43(7), 729–734 (2007).
    [CrossRef]
  16. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
    [CrossRef] [PubMed]
  17. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009).
    [CrossRef] [PubMed]
  18. K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+ doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solidi, A Appl. Res. 200(1), R5–R7 (2003).
    [CrossRef]
  19. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [CrossRef]
  20. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [CrossRef]
  21. A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
    [CrossRef]
  22. K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
    [CrossRef]
  23. R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
    [CrossRef]
  24. M. Springis, A. Pujats, and J. Valbis, “Polarization of luminescence of colour centres in YAG crystals,” J. Phys. Condens. Matter 3(28), 5457–5461 (1991).
    [CrossRef]
  25. H. Yin, P. Deng, and F. Gan, “Defects in YAG:Yb crystals,” J. Appl. Phys. 83(7), 3825–3829 (1998).
    [CrossRef]
  26. P. Yang, P. Deng, J. Xu, and Z. Yin, “Growth of high-quality single crystal of 30% at. Yb:YAG and its laser performance,” J. Cryst. Growth 216(1–4), 348–351 (2000).
    [CrossRef]
  27. J. Legendziewicz and J. Sokolnicki, “Spectroscopy and structural characteristic of Yb3+ and Nd3+ ions doped nanostructured Lu2O3 and sol–gel derived silica host materials,” J. Alloy. Comp. 451(1-2), 600–605 (2008).
    [CrossRef]
  28. L. van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
    [CrossRef]
  29. M. Nikl, A. Yoshikawa, and T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
    [CrossRef]
  30. V. V. Mürk, A. I. Kuznetsov, and B. R. Namozov, “Kinetics of intrinsic luminescence and energy transfer in third group metal oxides,” Phys. Status Solidi A 63(2), K131–K135 (1981).
    [CrossRef]
  31. W. Hayes, M. J. Kanet, O. Salminents, and A. I. Kuznetsov, “An ODMR study of exciton trapping in Y2O3 and Sc2O3,” Phys. C. Solid State Phys. 17(14), L383–L387 (1984).
    [CrossRef]
  32. A. Lushchik, M. Kirm, C. Lushchik, I. Martinson, and G. Zimmerer, “Luminescence of free and self-trapped excitons in wide-gap oxides,” J. Lumin. 87–89, 232–234 (2000).
    [CrossRef]
  33. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
    [CrossRef]
  34. A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
    [CrossRef] [PubMed]
  35. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [CrossRef]
  36. M. Eichhorn, “High-power resonantly diode-pumped CW Er3+:YAG laser,” Appl. Phys. B 93(4), 773–778 (2008).
    [CrossRef]
  37. A. Pirri, G. Toci, D. Alderighi, and M. Vannini, “Effects of the excitation density on the laser output of two differently doped Yb:YAG ceramics,” Opt. Express 18(16), 17262–17272 (2010).
    [CrossRef] [PubMed]

2012 (1)

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II—application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2012).
[CrossRef]

2011 (2)

2010 (1)

2009 (2)

2008 (4)

M. Eichhorn, “High-power resonantly diode-pumped CW Er3+:YAG laser,” Appl. Phys. B 93(4), 773–778 (2008).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

J. Legendziewicz and J. Sokolnicki, “Spectroscopy and structural characteristic of Yb3+ and Nd3+ ions doped nanostructured Lu2O3 and sol–gel derived silica host materials,” J. Alloy. Comp. 451(1-2), 600–605 (2008).
[CrossRef]

2007 (4)

K. Takaichi, H. Yagi, P. Becker, A. Shirakawa, K. Ueda, L. Bohaty, T. Yanagitani, and A. A. Kaminskii, “New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxides: two-band tunable CW generation of Yb:Sc2O3 with laser-diode pumping and dispersion of refractive index in the visible and near-IR of undoped Sc2O3,” Laser Phys. Lett. 4(7), 507–510 (2007).
[CrossRef]

A. Novoselov, J. H. Mun, R. Simura, A. Yoshikawa, and T. Fukuda, “Micro-pulling-down: a viable approach to the crystal growth of refractory rare-earth sesquioxides,” Inorg. Mater. 43(7), 729–734 (2007).
[CrossRef]

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

2006 (2)

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express 14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).
[CrossRef]

2005 (3)

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 16116 (2005).
[CrossRef]

V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86(11), 111118 (2005).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

2004 (4)

M. Nikl, A. Yoshikawa, and T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
[CrossRef] [PubMed]

J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, “Efficient room temperature continuous-wave operation of an Yb3+:Lu2O3 crystal laser at 1041.6 and 1094.6 nm,” Opt. Express 12(14), 3125–3256 (2004).
[PubMed]

2003 (2)

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+ doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solidi, A Appl. Res. 200(1), R5–R7 (2003).
[CrossRef]

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

2002 (3)

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirarkawa, M. Musha, K. Ueda, H. Yagi, T. Yanagatani, and A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[CrossRef]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239(1), 879–883 (2002).
[CrossRef]

2000 (3)

A. Lushchik, M. Kirm, C. Lushchik, I. Martinson, and G. Zimmerer, “Luminescence of free and self-trapped excitons in wide-gap oxides,” J. Lumin. 87–89, 232–234 (2000).
[CrossRef]

L. van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
[CrossRef]

P. Yang, P. Deng, J. Xu, and Z. Yin, “Growth of high-quality single crystal of 30% at. Yb:YAG and its laser performance,” J. Cryst. Growth 216(1–4), 348–351 (2000).
[CrossRef]

1998 (1)

H. Yin, P. Deng, and F. Gan, “Defects in YAG:Yb crystals,” J. Appl. Phys. 83(7), 3825–3829 (1998).
[CrossRef]

1995 (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

1991 (1)

M. Springis, A. Pujats, and J. Valbis, “Polarization of luminescence of colour centres in YAG crystals,” J. Phys. Condens. Matter 3(28), 5457–5461 (1991).
[CrossRef]

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

1984 (1)

W. Hayes, M. J. Kanet, O. Salminents, and A. I. Kuznetsov, “An ODMR study of exciton trapping in Y2O3 and Sc2O3,” Phys. C. Solid State Phys. 17(14), L383–L387 (1984).
[CrossRef]

1981 (1)

V. V. Mürk, A. I. Kuznetsov, and B. R. Namozov, “Kinetics of intrinsic luminescence and energy transfer in third group metal oxides,” Phys. Status Solidi A 63(2), K131–K135 (1981).
[CrossRef]

Aggarwal, I.

Akchurin, M. Sh.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Alderighi, D.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

Bagayev, S. N.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).
[CrossRef]

Baker, C.

Balembois, F.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Becker, P.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

K. Takaichi, H. Yagi, P. Becker, A. Shirakawa, K. Ueda, L. Bohaty, T. Yanagitani, and A. A. Kaminskii, “New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxides: two-band tunable CW generation of Yb:Sc2O3 with laser-diode pumping and dispersion of refractive index in the visible and near-IR of undoped Sc2O3,” Laser Phys. Lett. 4(7), 507–510 (2007).
[CrossRef]

Bohaty, L.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

K. Takaichi, H. Yagi, P. Becker, A. Shirakawa, K. Ueda, L. Bohaty, T. Yanagitani, and A. A. Kaminskii, “New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxides: two-band tunable CW generation of Yb:Sc2O3 with laser-diode pumping and dispersion of refractive index in the visible and near-IR of undoped Sc2O3,” Laser Phys. Lett. 4(7), 507–510 (2007).
[CrossRef]

Bolz, A.

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239(1), 879–883 (2002).
[CrossRef]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Chan, C. C.

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Chénais, S.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

De Heer, E.

L. van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
[CrossRef]

Deng, P.

P. Yang, P. Deng, J. Xu, and Z. Yin, “Growth of high-quality single crystal of 30% at. Yb:YAG and its laser performance,” J. Cryst. Growth 216(1–4), 348–351 (2000).
[CrossRef]

H. Yin, P. Deng, and F. Gan, “Defects in YAG:Yb crystals,” J. Appl. Phys. 83(7), 3825–3829 (1998).
[CrossRef]

Dong, J.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

Druon, F.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Eichhorn, M.

M. Eichhorn, “High-power resonantly diode-pumped CW Er3+:YAG laser,” Appl. Phys. B 93(4), 773–778 (2008).
[CrossRef]

Fornasiero, L.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[CrossRef]

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Frantz, J.

Fukuda, T.

A. Novoselov, J. H. Mun, R. Simura, A. Yoshikawa, and T. Fukuda, “Micro-pulling-down: a viable approach to the crystal growth of refractory rare-earth sesquioxides,” Inorg. Mater. 43(7), 729–734 (2007).
[CrossRef]

M. Nikl, A. Yoshikawa, and T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[CrossRef]

Gainutdinov, R. V.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Gan, F.

H. Yin, P. Deng, and F. Gan, “Defects in YAG:Yb crystals,” J. Appl. Phys. 83(7), 3825–3829 (1998).
[CrossRef]

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Georges, P.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Griebner, U.

Hayes, W.

W. Hayes, M. J. Kanet, O. Salminents, and A. I. Kuznetsov, “An ODMR study of exciton trapping in Y2O3 and Sc2O3,” Phys. C. Solid State Phys. 17(14), L383–L387 (1984).
[CrossRef]

Heeroma, M.

L. van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
[CrossRef]

Hosokawa, S.

Huber, G.

J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, “Efficient room temperature continuous-wave operation of an Yb3+:Lu2O3 crystal laser at 1041.6 and 1094.6 nm,” Opt. Express 12(14), 3125–3256 (2004).
[PubMed]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239(1), 879–883 (2002).
[CrossRef]

Hunt, M.

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86(11), 111118 (2005).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

Ivanov, S. N.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).
[CrossRef]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

K. Takaichi, H. Yagi, P. Becker, A. Shirakawa, K. Ueda, L. Bohaty, T. Yanagitani, and A. A. Kaminskii, “New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxides: two-band tunable CW generation of Yb:Sc2O3 with laser-diode pumping and dispersion of refractive index in the visible and near-IR of undoped Sc2O3,” Laser Phys. Lett. 4(7), 507–510 (2007).
[CrossRef]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express 14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+ doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solidi, A Appl. Res. 200(1), R5–R7 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirarkawa, M. Musha, K. Ueda, H. Yagi, T. Yanagatani, and A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[CrossRef]

Kanet, M. J.

W. Hayes, M. J. Kanet, O. Salminents, and A. I. Kuznetsov, “An ODMR study of exciton trapping in Y2O3 and Sc2O3,” Phys. C. Solid State Phys. 17(14), L383–L387 (1984).
[CrossRef]

Khazanov, E. N.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).
[CrossRef]

Kim, W.

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

Kirm, M.

A. Lushchik, M. Kirm, C. Lushchik, I. Martinson, and G. Zimmerer, “Luminescence of free and self-trapped excitons in wide-gap oxides,” J. Lumin. 87–89, 232–234 (2000).
[CrossRef]

Kong, J.

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 16116 (2005).
[CrossRef]

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Kuznetsov, A. I.

W. Hayes, M. J. Kanet, O. Salminents, and A. I. Kuznetsov, “An ODMR study of exciton trapping in Y2O3 and Sc2O3,” Phys. C. Solid State Phys. 17(14), L383–L387 (1984).
[CrossRef]

V. V. Mürk, A. I. Kuznetsov, and B. R. Namozov, “Kinetics of intrinsic luminescence and energy transfer in third group metal oxides,” Phys. Status Solidi A 63(2), K131–K135 (1981).
[CrossRef]

Legendziewicz, J.

J. Legendziewicz and J. Sokolnicki, “Spectroscopy and structural characteristic of Yb3+ and Nd3+ ions doped nanostructured Lu2O3 and sol–gel derived silica host materials,” J. Alloy. Comp. 451(1-2), 600–605 (2008).
[CrossRef]

Liu, J.

Lu, J.

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 16116 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+ doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solidi, A Appl. Res. 200(1), R5–R7 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirarkawa, M. Musha, K. Ueda, H. Yagi, T. Yanagatani, and A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[CrossRef]

Lucas-Leclin, G.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Lupei, A.

V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86(11), 111118 (2005).
[CrossRef]

Lupei, V.

V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86(11), 111118 (2005).
[CrossRef]

Lushchik, A.

A. Lushchik, M. Kirm, C. Lushchik, I. Martinson, and G. Zimmerer, “Luminescence of free and self-trapped excitons in wide-gap oxides,” J. Lumin. 87–89, 232–234 (2000).
[CrossRef]

Lushchik, C.

A. Lushchik, M. Kirm, C. Lushchik, I. Martinson, and G. Zimmerer, “Luminescence of free and self-trapped excitons in wide-gap oxides,” J. Lumin. 87–89, 232–234 (2000).
[CrossRef]

Lutz, A.

Martinson, I.

A. Lushchik, M. Kirm, C. Lushchik, I. Martinson, and G. Zimmerer, “Luminescence of free and self-trapped excitons in wide-gap oxides,” J. Lumin. 87–89, 232–234 (2000).
[CrossRef]

Meijerink, A.

L. van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
[CrossRef]

Miklos, F.

Mix, E.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[CrossRef]

Mun, J. H.

A. Novoselov, J. H. Mun, R. Simura, A. Yoshikawa, and T. Fukuda, “Micro-pulling-down: a viable approach to the crystal growth of refractory rare-earth sesquioxides,” Inorg. Mater. 43(7), 729–734 (2007).
[CrossRef]

Mürk, V. V.

V. V. Mürk, A. I. Kuznetsov, and B. R. Namozov, “Kinetics of intrinsic luminescence and energy transfer in third group metal oxides,” Phys. Status Solidi A 63(2), K131–K135 (1981).
[CrossRef]

Musha, M.

J. Lu, K. Takaichi, T. Uematsu, A. Shirarkawa, M. Musha, K. Ueda, H. Yagi, T. Yanagatani, and A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[CrossRef]

Nakamura, S.

Namozov, B. R.

V. V. Mürk, A. I. Kuznetsov, and B. R. Namozov, “Kinetics of intrinsic luminescence and energy transfer in third group metal oxides,” Phys. Status Solidi A 63(2), K131–K135 (1981).
[CrossRef]

Nikl, M.

M. Nikl, A. Yoshikawa, and T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[CrossRef]

Novoselov, A.

A. Novoselov, J. H. Mun, R. Simura, A. Yoshikawa, and T. Fukuda, “Micro-pulling-down: a viable approach to the crystal growth of refractory rare-earth sesquioxides,” Inorg. Mater. 43(7), 729–734 (2007).
[CrossRef]

Ogawa, T.

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Petermann, K.

U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
[CrossRef] [PubMed]

J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, “Efficient room temperature continuous-wave operation of an Yb3+:Lu2O3 crystal laser at 1041.6 and 1094.6 nm,” Opt. Express 12(14), 3125–3256 (2004).
[PubMed]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239(1), 879–883 (2002).
[CrossRef]

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[CrossRef]

Peters, V.

J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, “Efficient room temperature continuous-wave operation of an Yb3+:Lu2O3 crystal laser at 1041.6 and 1094.6 nm,” Opt. Express 12(14), 3125–3256 (2004).
[PubMed]

U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
[CrossRef] [PubMed]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239(1), 879–883 (2002).
[CrossRef]

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[CrossRef]

Petrov, V.

Pirri, A.

Pujats, A.

M. Springis, A. Pujats, and J. Valbis, “Polarization of luminescence of colour centres in YAG crystals,” J. Phys. Condens. Matter 3(28), 5457–5461 (1991).
[CrossRef]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Rico, M.

Roger, J. P.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Sadowski, B.

Salminents, O.

W. Hayes, M. J. Kanet, O. Salminents, and A. I. Kuznetsov, “An ODMR study of exciton trapping in Y2O3 and Sc2O3,” Phys. C. Solid State Phys. 17(14), L383–L387 (1984).
[CrossRef]

Sanghera, J.

Shaw, B.

Shirakava, A.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Shirakawa, A.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

K. Takaichi, H. Yagi, P. Becker, A. Shirakawa, K. Ueda, L. Bohaty, T. Yanagitani, and A. A. Kaminskii, “New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxides: two-band tunable CW generation of Yb:Sc2O3 with laser-diode pumping and dispersion of refractive index in the visible and near-IR of undoped Sc2O3,” Laser Phys. Lett. 4(7), 507–510 (2007).
[CrossRef]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express 14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+ doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solidi, A Appl. Res. 200(1), R5–R7 (2003).
[CrossRef]

Shirarkawa, A.

J. Lu, K. Takaichi, T. Uematsu, A. Shirarkawa, M. Musha, K. Ueda, H. Yagi, T. Yanagatani, and A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[CrossRef]

Simura, R.

A. Novoselov, J. H. Mun, R. Simura, A. Yoshikawa, and T. Fukuda, “Micro-pulling-down: a viable approach to the crystal growth of refractory rare-earth sesquioxides,” Inorg. Mater. 43(7), 729–734 (2007).
[CrossRef]

Sokolnicki, J.

J. Legendziewicz and J. Sokolnicki, “Spectroscopy and structural characteristic of Yb3+ and Nd3+ ions doped nanostructured Lu2O3 and sol–gel derived silica host materials,” J. Alloy. Comp. 451(1-2), 600–605 (2008).
[CrossRef]

Springis, M.

M. Springis, A. Pujats, and J. Valbis, “Polarization of luminescence of colour centres in YAG crystals,” J. Phys. Condens. Matter 3(28), 5457–5461 (1991).
[CrossRef]

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Takaichi, K.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

K. Takaichi, H. Yagi, P. Becker, A. Shirakawa, K. Ueda, L. Bohaty, T. Yanagitani, and A. A. Kaminskii, “New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxides: two-band tunable CW generation of Yb:Sc2O3 with laser-diode pumping and dispersion of refractive index in the visible and near-IR of undoped Sc2O3,” Laser Phys. Lett. 4(7), 507–510 (2007).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express 14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+ doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solidi, A Appl. Res. 200(1), R5–R7 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirarkawa, M. Musha, K. Ueda, H. Yagi, T. Yanagatani, and A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[CrossRef]

Tang, D. Y.

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 16116 (2005).
[CrossRef]

Taranov, A. V.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).
[CrossRef]

Toci, G.

Tokurakawa, M.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express 14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

Ueda, K.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

K. Takaichi, H. Yagi, P. Becker, A. Shirakawa, K. Ueda, L. Bohaty, T. Yanagitani, and A. A. Kaminskii, “New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxides: two-band tunable CW generation of Yb:Sc2O3 with laser-diode pumping and dispersion of refractive index in the visible and near-IR of undoped Sc2O3,” Laser Phys. Lett. 4(7), 507–510 (2007).
[CrossRef]

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express 14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).
[CrossRef]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 16116 (2005).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+ doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solidi, A Appl. Res. 200(1), R5–R7 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirarkawa, M. Musha, K. Ueda, H. Yagi, T. Yanagatani, and A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[CrossRef]

Uematsu, T.

J. Lu, K. Takaichi, T. Uematsu, A. Shirarkawa, M. Musha, K. Ueda, H. Yagi, T. Yanagatani, and A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[CrossRef]

Valbis, J.

M. Springis, A. Pujats, and J. Valbis, “Polarization of luminescence of colour centres in YAG crystals,” J. Phys. Condens. Matter 3(28), 5457–5461 (1991).
[CrossRef]

van Pieterson, L.

L. van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
[CrossRef]

Vannini, M.

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Villalobos, G.

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Wada, S.

Xu, J.

P. Yang, P. Deng, J. Xu, and Z. Yin, “Growth of high-quality single crystal of 30% at. Yb:YAG and its laser performance,” J. Cryst. Growth 216(1–4), 348–351 (2000).
[CrossRef]

Yagi, H.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

K. Takaichi, H. Yagi, P. Becker, A. Shirakawa, K. Ueda, L. Bohaty, T. Yanagitani, and A. A. Kaminskii, “New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxides: two-band tunable CW generation of Yb:Sc2O3 with laser-diode pumping and dispersion of refractive index in the visible and near-IR of undoped Sc2O3,” Laser Phys. Lett. 4(7), 507–510 (2007).
[CrossRef]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express 14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).
[CrossRef]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 16116 (2005).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+ doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solidi, A Appl. Res. 200(1), R5–R7 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirarkawa, M. Musha, K. Ueda, H. Yagi, T. Yanagatani, and A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[CrossRef]

Yanagatani, T.

J. Lu, K. Takaichi, T. Uematsu, A. Shirarkawa, M. Musha, K. Ueda, H. Yagi, T. Yanagatani, and A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[CrossRef]

Yanagitani, T.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

K. Takaichi, H. Yagi, P. Becker, A. Shirakawa, K. Ueda, L. Bohaty, T. Yanagitani, and A. A. Kaminskii, “New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxides: two-band tunable CW generation of Yb:Sc2O3 with laser-diode pumping and dispersion of refractive index in the visible and near-IR of undoped Sc2O3,” Laser Phys. Lett. 4(7), 507–510 (2007).
[CrossRef]

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express 14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).
[CrossRef]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 16116 (2005).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+ doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solidi, A Appl. Res. 200(1), R5–R7 (2003).
[CrossRef]

Yang, P.

P. Yang, P. Deng, J. Xu, and Z. Yin, “Growth of high-quality single crystal of 30% at. Yb:YAG and its laser performance,” J. Cryst. Growth 216(1–4), 348–351 (2000).
[CrossRef]

Yin, H.

H. Yin, P. Deng, and F. Gan, “Defects in YAG:Yb crystals,” J. Appl. Phys. 83(7), 3825–3829 (1998).
[CrossRef]

Yin, Z.

P. Yang, P. Deng, J. Xu, and Z. Yin, “Growth of high-quality single crystal of 30% at. Yb:YAG and its laser performance,” J. Cryst. Growth 216(1–4), 348–351 (2000).
[CrossRef]

Yoshida, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

Yoshikawa, A.

A. Novoselov, J. H. Mun, R. Simura, A. Yoshikawa, and T. Fukuda, “Micro-pulling-down: a viable approach to the crystal growth of refractory rare-earth sesquioxides,” Inorg. Mater. 43(7), 729–734 (2007).
[CrossRef]

M. Nikl, A. Yoshikawa, and T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[CrossRef]

Yoshioka, H.

Zhao, B.

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 16116 (2005).
[CrossRef]

Zimmerer, G.

A. Lushchik, M. Kirm, C. Lushchik, I. Martinson, and G. Zimmerer, “Luminescence of free and self-trapped excitons in wide-gap oxides,” J. Lumin. 87–89, 232–234 (2000).
[CrossRef]

Appl. Phys. B (2)

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II—application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2012).
[CrossRef]

M. Eichhorn, “High-power resonantly diode-pumped CW Er3+:YAG laser,” Appl. Phys. B 93(4), 773–778 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 16116 (2005).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirarkawa, M. Musha, K. Ueda, H. Yagi, T. Yanagatani, and A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[CrossRef]

V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86(11), 111118 (2005).
[CrossRef]

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Crystallogr. Rep. (1)

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Inorg. Mater. (1)

A. Novoselov, J. H. Mun, R. Simura, A. Yoshikawa, and T. Fukuda, “Micro-pulling-down: a viable approach to the crystal growth of refractory rare-earth sesquioxides,” Inorg. Mater. 43(7), 729–734 (2007).
[CrossRef]

J. Alloy. Comp. (1)

J. Legendziewicz and J. Sokolnicki, “Spectroscopy and structural characteristic of Yb3+ and Nd3+ ions doped nanostructured Lu2O3 and sol–gel derived silica host materials,” J. Alloy. Comp. 451(1-2), 600–605 (2008).
[CrossRef]

J. Am. Ceram. Soc. (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

J. Appl. Phys. (1)

H. Yin, P. Deng, and F. Gan, “Defects in YAG:Yb crystals,” J. Appl. Phys. 83(7), 3825–3829 (1998).
[CrossRef]

J. Cryst. Growth (2)

P. Yang, P. Deng, J. Xu, and Z. Yin, “Growth of high-quality single crystal of 30% at. Yb:YAG and its laser performance,” J. Cryst. Growth 216(1–4), 348–351 (2000).
[CrossRef]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239(1), 879–883 (2002).
[CrossRef]

J. Lumin. (2)

L. van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
[CrossRef]

A. Lushchik, M. Kirm, C. Lushchik, I. Martinson, and G. Zimmerer, “Luminescence of free and self-trapped excitons in wide-gap oxides,” J. Lumin. 87–89, 232–234 (2000).
[CrossRef]

J. Phys. Condens. Matter (1)

M. Springis, A. Pujats, and J. Valbis, “Polarization of luminescence of colour centres in YAG crystals,” J. Phys. Condens. Matter 3(28), 5457–5461 (1991).
[CrossRef]

Laser Phys. Lett. (3)

K. Takaichi, H. Yagi, P. Becker, A. Shirakawa, K. Ueda, L. Bohaty, T. Yanagitani, and A. A. Kaminskii, “New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxides: two-band tunable CW generation of Yb:Sc2O3 with laser-diode pumping and dispersion of refractive index in the visible and near-IR of undoped Sc2O3,” Laser Phys. Lett. 4(7), 507–510 (2007).
[CrossRef]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Opt. Mater. (2)

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[CrossRef]

M. Nikl, A. Yoshikawa, and T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[CrossRef]

Phys. C. Solid State Phys. (1)

W. Hayes, M. J. Kanet, O. Salminents, and A. I. Kuznetsov, “An ODMR study of exciton trapping in Y2O3 and Sc2O3,” Phys. C. Solid State Phys. 17(14), L383–L387 (1984).
[CrossRef]

Phys. Status Solidi A (1)

V. V. Mürk, A. I. Kuznetsov, and B. R. Namozov, “Kinetics of intrinsic luminescence and energy transfer in third group metal oxides,” Phys. Status Solidi A 63(2), K131–K135 (1981).
[CrossRef]

Phys. Status Solidi, A Appl. Res. (1)

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+ doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solidi, A Appl. Res. 200(1), R5–R7 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Laser cavity. EM: flat end-mirror; C: ceramic sample; FM: folding mirror; L: convergent lens; OC: flat output coupler; M1 and M2: power meters.

Fig. 2
Fig. 2

(a)-Spectral dependence of absorption coefficient of 1% at. Yb:Sc2O3 ceramic; (b)- 4f-4f transition of Yb3+; λp are the pump wavelengths used in the experiment.

Fig. 3
Fig. 3

(a)-Photoluminescence spectrum of 1% at. Yb:Sc2O3 ceramic, Ex = 225 nm; (b)-Excitation spectrum, Em = 365 nm. Log scale for Y-axis is used for better clarity. Both spectra are acquired at room temperature.

Fig. 4
Fig. 4

Laser output power as a function of the absorbed pump power in 1% at. Yb:Sc2O3 ceramic pumped at 933 nm (a) and 968 nm (b). T denotes the transmittance of the OC mirrors, λl is the laser emission wavelength; (c)-ABS at 933 nm as a function of the absorbed pump power, Pp.

Fig. 5
Fig. 5

Simulated temperature distribution after 50 pump pulses. (a): Pp = 18.7 W (Pabs = 2.92 W), pump wavelength 968 nm, pump spot radius 67 μm at 1/e2. Pout = 1.775, laser mode radius 60 μm at 1/e2, absorption coefficient 56.5 m-1; (b): Pp = 7.95 W (Pabs = 2.92 W), pump wavelength 933 nm, pump spot radius 150 μm at 1/e2, laser mode radius 90 μm, Pout = 0.85 W, absorption coefficient 152.4 m−1. In both simulations: TOC = 10.50%, τl = 0.8 ms.

Fig. 6
Fig. 6

Laser output power as a function of the absorbed pump power in 1% at. Yb:Sc2O3 ceramic pumped at 933 nm obtained by using different Duty Factor (from 20% to 40%).

Fig. 7
Fig. 7

(a)-Tuning range; (b)-Laser output power as a function of the absorbed pump power at 1032 nm.

Tables (1)

Tables Icon

Table 1 Caird analysis parameters for 1% at. Yb:Sc2O3 ceramic.

Metrics