Abstract

This paper presents an optical diagnostic technique based on seeded thermographic phosphor particles, which allows the simultaneous two-dimensional measurement of gas temperature, velocity and mixture fraction in turbulent flows. The particle Mie scattering signal is recorded to determine the velocity using a conventional PIV approach and the phosphorescence emission is detected to determine the tracer temperature using a two-color method. Theoretical models presented in this work show that the temperature of small tracer particles matches the gas temperature. In addition, by seeding phosphorescent particles to one stream and non-luminescent particles to the other stream, the mixture fraction can also be determined using the phosphorescence emission intensity after conditioning for temperature. The experimental technique is described in detail and a suitable phosphor is identified based on spectroscopic investigations. The joint diagnostics are demonstrated by simultaneously measuring temperature, velocity and mixture fraction in a turbulent jet heated up to 700 K. Correlated single shots are presented with a precision of 2 to 5% and an accuracy of 2%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Geyer, A. Kempf, A. Dreizler, and J. Janicka, “Turbulent opposed-jet flames: A critical benchmark experiment for combustion LES,” Combust. Flame 143(4), 524–548 (2005).
    [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach Publishers, 1990).
  3. J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34(3), 442–448 (1996).
    [CrossRef]
  4. D. Most and A. Leipertz, “Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique,” Appl. Opt. 40(30), 5379–5387 (2001).
    [CrossRef] [PubMed]
  5. C. F. Kaminski, J. Engtröm, and M. Alden, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).
  6. P. R. Medwell, Q. N. Chan, P. A. Kalt, Z. T. Alwahabi, B. B. Dally, and G. J. Nathan, “Instantaneous temperature imaging of diffusion flames using two-line atomic fluorescence,” Appl. Spectrosc. 64(2), 173–176 (2010).
    [CrossRef] [PubMed]
  7. R. Giezendanner-Thoben, U. Meier, W. Meier, J. Heinze, and M. Aigner, “Phase-locked two-line OH planar laser-induced fluorescence thermometry in a pulsating gas turbine model combustor at atmospheric pressure,” Appl. Opt. 44(31), 6565–6577 (2005).
    [CrossRef] [PubMed]
  8. M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22(4), 251–253 (1997).
    [CrossRef] [PubMed]
  9. M. Löffler, F. Beyrau, and A. Leipertz, “Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines,” Appl. Opt. 49(1), 37–49 (2010).
    [CrossRef] [PubMed]
  10. B. K. McMillin, J. L. Palmer, and R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32(36), 7532–7545 (1993).
    [CrossRef] [PubMed]
  11. W. G. Bessler, F. Hildenbrand, and C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame,” Appl. Opt. 40(6), 748–756 (2001).
    [CrossRef] [PubMed]
  12. W. G. Bessler and C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B-Lasers 78(5), 519–533 (2004).
    [CrossRef]
  13. S. Pfadler, F. Beyrau, and A. Leipertz, “Flame front detection and characterization using conditioned particle image velocimetry (CPIV),” Opt. Express 15(23), 15444–15456 (2007).
    [CrossRef] [PubMed]
  14. M. Yu, G. Särner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol. 21(3), 4 (2010).
    [CrossRef]
  15. J. P. Feist, A. L. Heyes, and S. Seefeldt, “Oxygen quenching of phosphorescence from thermographic phosphors,” Meas. Sci. Technol. 14(5), N17–N20 (2003).
    [CrossRef]
  16. J. Brübach, A. Dreizler, and J. Janicka, “Gas compositional and pressure effects on thermographic phosphor thermometry,” Meas. Sci. Technol. 18(3), 764–770 (2007).
    [CrossRef]
  17. S. Allison and G. Gillies, “Remote thermometry with thermographic phosphors: Instrumentation and applications,” Rev. Sci. Instrum. 68(7), 2615–2649 (1997).
    [CrossRef]
  18. M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: A survey of combustion applications,” Prog. Energ. Combust. 37(4), 422–461 (2011).
    [CrossRef]
  19. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
  20. J. P. Feist, A. L. Heyes, and S. Seefeldt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” Proc. Instn. Mech. Engrs Part A: J. Power and Energy 217(2), 193–200 (2003).
    [CrossRef]
  21. J. Brübach, M. Hage, J. Janicka, and A. Dreizler, “Simultaneous phosphor and CARS thermometry at the wall-gas interface within a combustor,” Proc. Combust. Inst. 32(1), 855–861 (2009).
    [CrossRef]
  22. A. Omrane, F. Ossler, and M. Aldén, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst. 29(2), 2653–2659 (2002).
    [CrossRef]
  23. J. Brübach, T. Kissel, and A. Dreizler, “Phosphor thermometry at an optically accessible internal combustion engine,” in Laser Applications to Chemical, Security and Environmental Analysis, (Optical Society of America, 2010), paper LWA5.
  24. A. Omrane, G. Särner, and M. Aldén, “Two-dimensional temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B-Lasers 79, 431–434 (2004).
    [CrossRef]
  25. A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt. 43(17), 3523–3529 (2004).
    [CrossRef] [PubMed]
  26. J. P. Feist and A. L. Heyes, “The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications,” Meas. Sci. Technol. 11(7), 942–947 (2000).
    [CrossRef]
  27. L. P. Goss, A. A. Smith, and M. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60(12), 3702–3706 (1989).
    [CrossRef]
  28. A. Heyes, S. Seefeldt, and J. Feist, “Two-color phosphor thermometry for surface temperature measurement,” Opt. Laser Technol. 38(4-6), 257–265 (2006).
    [CrossRef]
  29. J. Brübach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B-Lasers 83(4), 499–502 (2006).
    [CrossRef]
  30. G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett. 33(12), 1327–1329 (2008).
    [CrossRef] [PubMed]
  31. B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
    [CrossRef]
  32. R. Hasegawa, I. Sakata, H. Yanagihara, G. Särner, M. Richter, M. Aldén, and B. Johansson, “Two-dimensional temperature measurements in engine combustion using phosphor thermometry,” SAE Paper, 2007–01–1883, 1797–1803 (2007).
  33. A. Omrane, P. Petersson, M. Aldén, and M. Linne, “Simultaneous two-dimensional flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B-Lasers 92, 99–102 (2008).
    [CrossRef]
  34. A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B-Lasers O. 106(2), 435–444 (2012).
    [CrossRef]
  35. D. Ravichandran, R. Roy, W. B. White, and S. Erdei, “Synthesis and characterization of sol-gel derived hexa-aluminate phosphors,” J. Mater. Res. 12(03), 819–824 (1997).
    [CrossRef]
  36. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Oxford Science Publications, 1989), 2nd ed.
  37. W. Yen, S. Shionoya, and H. M. Yamamoto, Phosphor Handbook, 2nd ed. (CRC Press, 2006).
  38. Y. H. Wang and Z. H. Zhang, “Luminescence thermal degradation mechanism in BaMgAl10 O17:Eu2+ phosphor,” Electrochem. Solid St. 8(11), H97–H99 (2005).
    [CrossRef]
  39. M. Raffel, C. Willert, S. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, 2nd ed. (Springer, 2007).
  40. F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, 2nd ed. (Academic Press, 1981).
  41. A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Technol. 8(12), 1406–1416 (1997).
    [CrossRef]
  42. F. Picano, F. Battista, G. Troiani, and C. M. Casciola, “Dynamics of PIV seeding particles in turbulent premixed flames,” Exp. Fluids 50(1), 75–88 (2011).
    [CrossRef]
  43. P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3 Al5O12, and LaF3 in the range 77°K–300°K,” J. Appl. Phys. 38(4), 1603 (1967).
    [CrossRef]
  44. N. Konopliv and E. M. Sparrow, “Transient heat conduction in non-homogeneous spherical systems,” Heat Mass Transfer 3, 197–210 (1970).
  45. M. Glass and I. Kennedy, “An improved seeding method for high temperature laser doppler velocimetry,” Combust. Flame 29, 333–335 (1977).
    [CrossRef]
  46. J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B-Lasers 96(2-3), 237–240 (2009).
    [CrossRef]
  47. S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14(22), 10171–10180 (2006).
    [CrossRef] [PubMed]

2012 (1)

A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B-Lasers O. 106(2), 435–444 (2012).
[CrossRef]

2011 (3)

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[CrossRef]

M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: A survey of combustion applications,” Prog. Energ. Combust. 37(4), 422–461 (2011).
[CrossRef]

F. Picano, F. Battista, G. Troiani, and C. M. Casciola, “Dynamics of PIV seeding particles in turbulent premixed flames,” Exp. Fluids 50(1), 75–88 (2011).
[CrossRef]

2010 (3)

2009 (2)

J. Brübach, M. Hage, J. Janicka, and A. Dreizler, “Simultaneous phosphor and CARS thermometry at the wall-gas interface within a combustor,” Proc. Combust. Inst. 32(1), 855–861 (2009).
[CrossRef]

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B-Lasers 96(2-3), 237–240 (2009).
[CrossRef]

2008 (2)

A. Omrane, P. Petersson, M. Aldén, and M. Linne, “Simultaneous two-dimensional flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B-Lasers 92, 99–102 (2008).
[CrossRef]

G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett. 33(12), 1327–1329 (2008).
[CrossRef] [PubMed]

2007 (2)

S. Pfadler, F. Beyrau, and A. Leipertz, “Flame front detection and characterization using conditioned particle image velocimetry (CPIV),” Opt. Express 15(23), 15444–15456 (2007).
[CrossRef] [PubMed]

J. Brübach, A. Dreizler, and J. Janicka, “Gas compositional and pressure effects on thermographic phosphor thermometry,” Meas. Sci. Technol. 18(3), 764–770 (2007).
[CrossRef]

2006 (3)

A. Heyes, S. Seefeldt, and J. Feist, “Two-color phosphor thermometry for surface temperature measurement,” Opt. Laser Technol. 38(4-6), 257–265 (2006).
[CrossRef]

J. Brübach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B-Lasers 83(4), 499–502 (2006).
[CrossRef]

S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14(22), 10171–10180 (2006).
[CrossRef] [PubMed]

2005 (3)

R. Giezendanner-Thoben, U. Meier, W. Meier, J. Heinze, and M. Aigner, “Phase-locked two-line OH planar laser-induced fluorescence thermometry in a pulsating gas turbine model combustor at atmospheric pressure,” Appl. Opt. 44(31), 6565–6577 (2005).
[CrossRef] [PubMed]

Y. H. Wang and Z. H. Zhang, “Luminescence thermal degradation mechanism in BaMgAl10 O17:Eu2+ phosphor,” Electrochem. Solid St. 8(11), H97–H99 (2005).
[CrossRef]

D. Geyer, A. Kempf, A. Dreizler, and J. Janicka, “Turbulent opposed-jet flames: A critical benchmark experiment for combustion LES,” Combust. Flame 143(4), 524–548 (2005).
[CrossRef]

2004 (3)

A. Omrane, G. Särner, and M. Aldén, “Two-dimensional temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B-Lasers 79, 431–434 (2004).
[CrossRef]

A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt. 43(17), 3523–3529 (2004).
[CrossRef] [PubMed]

W. G. Bessler and C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B-Lasers 78(5), 519–533 (2004).
[CrossRef]

2003 (2)

J. P. Feist, A. L. Heyes, and S. Seefeldt, “Oxygen quenching of phosphorescence from thermographic phosphors,” Meas. Sci. Technol. 14(5), N17–N20 (2003).
[CrossRef]

J. P. Feist, A. L. Heyes, and S. Seefeldt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” Proc. Instn. Mech. Engrs Part A: J. Power and Energy 217(2), 193–200 (2003).
[CrossRef]

2002 (1)

A. Omrane, F. Ossler, and M. Aldén, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst. 29(2), 2653–2659 (2002).
[CrossRef]

2001 (2)

2000 (1)

J. P. Feist and A. L. Heyes, “The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications,” Meas. Sci. Technol. 11(7), 942–947 (2000).
[CrossRef]

1998 (1)

C. F. Kaminski, J. Engtröm, and M. Alden, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).

1997 (4)

D. Ravichandran, R. Roy, W. B. White, and S. Erdei, “Synthesis and characterization of sol-gel derived hexa-aluminate phosphors,” J. Mater. Res. 12(03), 819–824 (1997).
[CrossRef]

S. Allison and G. Gillies, “Remote thermometry with thermographic phosphors: Instrumentation and applications,” Rev. Sci. Instrum. 68(7), 2615–2649 (1997).
[CrossRef]

A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Technol. 8(12), 1406–1416 (1997).
[CrossRef]

M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22(4), 251–253 (1997).
[CrossRef] [PubMed]

1996 (1)

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34(3), 442–448 (1996).
[CrossRef]

1993 (1)

1989 (1)

L. P. Goss, A. A. Smith, and M. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60(12), 3702–3706 (1989).
[CrossRef]

1977 (1)

M. Glass and I. Kennedy, “An improved seeding method for high temperature laser doppler velocimetry,” Combust. Flame 29, 333–335 (1977).
[CrossRef]

1970 (1)

N. Konopliv and E. M. Sparrow, “Transient heat conduction in non-homogeneous spherical systems,” Heat Mass Transfer 3, 197–210 (1970).

1967 (1)

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3 Al5O12, and LaF3 in the range 77°K–300°K,” J. Appl. Phys. 38(4), 1603 (1967).
[CrossRef]

Aigner, M.

Alden, M.

C. F. Kaminski, J. Engtröm, and M. Alden, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).

Aldén, M.

M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: A survey of combustion applications,” Prog. Energ. Combust. 37(4), 422–461 (2011).
[CrossRef]

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[CrossRef]

M. Yu, G. Särner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol. 21(3), 4 (2010).
[CrossRef]

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B-Lasers 96(2-3), 237–240 (2009).
[CrossRef]

G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett. 33(12), 1327–1329 (2008).
[CrossRef] [PubMed]

A. Omrane, P. Petersson, M. Aldén, and M. Linne, “Simultaneous two-dimensional flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B-Lasers 92, 99–102 (2008).
[CrossRef]

A. Omrane, G. Särner, and M. Aldén, “Two-dimensional temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B-Lasers 79, 431–434 (2004).
[CrossRef]

A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt. 43(17), 3523–3529 (2004).
[CrossRef] [PubMed]

A. Omrane, F. Ossler, and M. Aldén, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst. 29(2), 2653–2659 (2002).
[CrossRef]

Allison, S.

S. Allison and G. Gillies, “Remote thermometry with thermographic phosphors: Instrumentation and applications,” Rev. Sci. Instrum. 68(7), 2615–2649 (1997).
[CrossRef]

Alwahabi, Z. T.

Baert, R. S. G.

M. Yu, G. Särner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol. 21(3), 4 (2010).
[CrossRef]

Battista, F.

F. Picano, F. Battista, G. Troiani, and C. M. Casciola, “Dynamics of PIV seeding particles in turbulent premixed flames,” Exp. Fluids 50(1), 75–88 (2011).
[CrossRef]

Bessler, W. G.

Beyrau, F.

Brübach, J.

J. Brübach, M. Hage, J. Janicka, and A. Dreizler, “Simultaneous phosphor and CARS thermometry at the wall-gas interface within a combustor,” Proc. Combust. Inst. 32(1), 855–861 (2009).
[CrossRef]

J. Brübach, A. Dreizler, and J. Janicka, “Gas compositional and pressure effects on thermographic phosphor thermometry,” Meas. Sci. Technol. 18(3), 764–770 (2007).
[CrossRef]

J. Brübach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B-Lasers 83(4), 499–502 (2006).
[CrossRef]

Casciola, C. M.

F. Picano, F. Battista, G. Troiani, and C. M. Casciola, “Dynamics of PIV seeding particles in turbulent premixed flames,” Exp. Fluids 50(1), 75–88 (2011).
[CrossRef]

Chan, Q. N.

Croft, W. J.

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3 Al5O12, and LaF3 in the range 77°K–300°K,” J. Appl. Phys. 38(4), 1603 (1967).
[CrossRef]

Dally, B. B.

de Goey, L. P. H.

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[CrossRef]

M. Yu, G. Särner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol. 21(3), 4 (2010).
[CrossRef]

Dreizler, A.

J. Brübach, M. Hage, J. Janicka, and A. Dreizler, “Simultaneous phosphor and CARS thermometry at the wall-gas interface within a combustor,” Proc. Combust. Inst. 32(1), 855–861 (2009).
[CrossRef]

J. Brübach, A. Dreizler, and J. Janicka, “Gas compositional and pressure effects on thermographic phosphor thermometry,” Meas. Sci. Technol. 18(3), 764–770 (2007).
[CrossRef]

J. Brübach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B-Lasers 83(4), 499–502 (2006).
[CrossRef]

D. Geyer, A. Kempf, A. Dreizler, and J. Janicka, “Turbulent opposed-jet flames: A critical benchmark experiment for combustion LES,” Combust. Flame 143(4), 524–548 (2005).
[CrossRef]

Engtröm, J.

C. F. Kaminski, J. Engtröm, and M. Alden, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).

Erdei, S.

D. Ravichandran, R. Roy, W. B. White, and S. Erdei, “Synthesis and characterization of sol-gel derived hexa-aluminate phosphors,” J. Mater. Res. 12(03), 819–824 (1997).
[CrossRef]

Feist, J.

A. Heyes, S. Seefeldt, and J. Feist, “Two-color phosphor thermometry for surface temperature measurement,” Opt. Laser Technol. 38(4-6), 257–265 (2006).
[CrossRef]

Feist, J. P.

J. P. Feist, A. L. Heyes, and S. Seefeldt, “Oxygen quenching of phosphorescence from thermographic phosphors,” Meas. Sci. Technol. 14(5), N17–N20 (2003).
[CrossRef]

J. P. Feist, A. L. Heyes, and S. Seefeldt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” Proc. Instn. Mech. Engrs Part A: J. Power and Energy 217(2), 193–200 (2003).
[CrossRef]

J. P. Feist and A. L. Heyes, “The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications,” Meas. Sci. Technol. 11(7), 942–947 (2000).
[CrossRef]

Finkelstein, N. D.

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34(3), 442–448 (1996).
[CrossRef]

Forkey, J. N.

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34(3), 442–448 (1996).
[CrossRef]

Geyer, D.

D. Geyer, A. Kempf, A. Dreizler, and J. Janicka, “Turbulent opposed-jet flames: A critical benchmark experiment for combustion LES,” Combust. Flame 143(4), 524–548 (2005).
[CrossRef]

Giezendanner-Thoben, R.

Gillies, G.

S. Allison and G. Gillies, “Remote thermometry with thermographic phosphors: Instrumentation and applications,” Rev. Sci. Instrum. 68(7), 2615–2649 (1997).
[CrossRef]

Glass, M.

M. Glass and I. Kennedy, “An improved seeding method for high temperature laser doppler velocimetry,” Combust. Flame 29, 333–335 (1977).
[CrossRef]

Goss, L. P.

L. P. Goss, A. A. Smith, and M. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60(12), 3702–3706 (1989).
[CrossRef]

Grisch, F.

Hage, M.

J. Brübach, M. Hage, J. Janicka, and A. Dreizler, “Simultaneous phosphor and CARS thermometry at the wall-gas interface within a combustor,” Proc. Combust. Inst. 32(1), 855–861 (2009).
[CrossRef]

Hanson, R. K.

Heinze, J.

Heyes, A.

A. Heyes, S. Seefeldt, and J. Feist, “Two-color phosphor thermometry for surface temperature measurement,” Opt. Laser Technol. 38(4-6), 257–265 (2006).
[CrossRef]

Heyes, A. L.

J. P. Feist, A. L. Heyes, and S. Seefeldt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” Proc. Instn. Mech. Engrs Part A: J. Power and Energy 217(2), 193–200 (2003).
[CrossRef]

J. P. Feist, A. L. Heyes, and S. Seefeldt, “Oxygen quenching of phosphorescence from thermographic phosphors,” Meas. Sci. Technol. 14(5), N17–N20 (2003).
[CrossRef]

J. P. Feist and A. L. Heyes, “The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications,” Meas. Sci. Technol. 11(7), 942–947 (2000).
[CrossRef]

Hildenbrand, F.

Janicka, J.

J. Brübach, M. Hage, J. Janicka, and A. Dreizler, “Simultaneous phosphor and CARS thermometry at the wall-gas interface within a combustor,” Proc. Combust. Inst. 32(1), 855–861 (2009).
[CrossRef]

J. Brübach, A. Dreizler, and J. Janicka, “Gas compositional and pressure effects on thermographic phosphor thermometry,” Meas. Sci. Technol. 18(3), 764–770 (2007).
[CrossRef]

D. Geyer, A. Kempf, A. Dreizler, and J. Janicka, “Turbulent opposed-jet flames: A critical benchmark experiment for combustion LES,” Combust. Flame 143(4), 524–548 (2005).
[CrossRef]

Johansson, B.

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B-Lasers 96(2-3), 237–240 (2009).
[CrossRef]

Jordan, J.

A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B-Lasers O. 106(2), 435–444 (2012).
[CrossRef]

Juhlin, G.

Kalt, P. A.

Kaminski, C. F.

C. F. Kaminski, J. Engtröm, and M. Alden, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).

Kempf, A.

D. Geyer, A. Kempf, A. Dreizler, and J. Janicka, “Turbulent opposed-jet flames: A critical benchmark experiment for combustion LES,” Combust. Flame 143(4), 524–548 (2005).
[CrossRef]

Kennedy, I.

M. Glass and I. Kennedy, “An improved seeding method for high temperature laser doppler velocimetry,” Combust. Flame 29, 333–335 (1977).
[CrossRef]

Klein, P. H.

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3 Al5O12, and LaF3 in the range 77°K–300°K,” J. Appl. Phys. 38(4), 1603 (1967).
[CrossRef]

Konnov, A. A.

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[CrossRef]

Konopliv, N.

N. Konopliv and E. M. Sparrow, “Transient heat conduction in non-homogeneous spherical systems,” Heat Mass Transfer 3, 197–210 (1970).

Leipertz, A.

Lempert, W. R.

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34(3), 442–448 (1996).
[CrossRef]

Li, B.

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[CrossRef]

Li, Z. S.

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[CrossRef]

Linden, J.

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[CrossRef]

Lindén, J.

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B-Lasers 96(2-3), 237–240 (2009).
[CrossRef]

Linne, M.

A. Omrane, P. Petersson, M. Aldén, and M. Linne, “Simultaneous two-dimensional flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B-Lasers 92, 99–102 (2008).
[CrossRef]

Löffler, M.

Luijten, C. C. M.

M. Yu, G. Särner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol. 21(3), 4 (2010).
[CrossRef]

McMillin, B. K.

Medwell, P. R.

Meier, U.

Meier, W.

Melling, A.

A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Technol. 8(12), 1406–1416 (1997).
[CrossRef]

Miles, R. B.

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34(3), 442–448 (1996).
[CrossRef]

Most, D.

Nathan, G. J.

Omrane, A.

M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: A survey of combustion applications,” Prog. Energ. Combust. 37(4), 422–461 (2011).
[CrossRef]

A. Omrane, P. Petersson, M. Aldén, and M. Linne, “Simultaneous two-dimensional flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B-Lasers 92, 99–102 (2008).
[CrossRef]

A. Omrane, G. Särner, and M. Aldén, “Two-dimensional temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B-Lasers 79, 431–434 (2004).
[CrossRef]

A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt. 43(17), 3523–3529 (2004).
[CrossRef] [PubMed]

A. Omrane, F. Ossler, and M. Aldén, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst. 29(2), 2653–2659 (2002).
[CrossRef]

Ossler, F.

A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt. 43(17), 3523–3529 (2004).
[CrossRef] [PubMed]

A. Omrane, F. Ossler, and M. Aldén, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst. 29(2), 2653–2659 (2002).
[CrossRef]

Palmer, J. L.

Patt, A.

J. Brübach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B-Lasers 83(4), 499–502 (2006).
[CrossRef]

Petersson, P.

A. Omrane, P. Petersson, M. Aldén, and M. Linne, “Simultaneous two-dimensional flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B-Lasers 92, 99–102 (2008).
[CrossRef]

Pfadler, S.

Picano, F.

F. Picano, F. Battista, G. Troiani, and C. M. Casciola, “Dynamics of PIV seeding particles in turbulent premixed flames,” Exp. Fluids 50(1), 75–88 (2011).
[CrossRef]

Post, M.

L. P. Goss, A. A. Smith, and M. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60(12), 3702–3706 (1989).
[CrossRef]

Ravichandran, D.

D. Ravichandran, R. Roy, W. B. White, and S. Erdei, “Synthesis and characterization of sol-gel derived hexa-aluminate phosphors,” J. Mater. Res. 12(03), 819–824 (1997).
[CrossRef]

Richter, M.

M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: A survey of combustion applications,” Prog. Energ. Combust. 37(4), 422–461 (2011).
[CrossRef]

M. Yu, G. Särner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol. 21(3), 4 (2010).
[CrossRef]

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B-Lasers 96(2-3), 237–240 (2009).
[CrossRef]

G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett. 33(12), 1327–1329 (2008).
[CrossRef] [PubMed]

Rothamer, A.

A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B-Lasers O. 106(2), 435–444 (2012).
[CrossRef]

Roy, R.

D. Ravichandran, R. Roy, W. B. White, and S. Erdei, “Synthesis and characterization of sol-gel derived hexa-aluminate phosphors,” J. Mater. Res. 12(03), 819–824 (1997).
[CrossRef]

Särner, G.

M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: A survey of combustion applications,” Prog. Energ. Combust. 37(4), 422–461 (2011).
[CrossRef]

M. Yu, G. Särner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol. 21(3), 4 (2010).
[CrossRef]

G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett. 33(12), 1327–1329 (2008).
[CrossRef] [PubMed]

A. Omrane, G. Särner, and M. Aldén, “Two-dimensional temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B-Lasers 79, 431–434 (2004).
[CrossRef]

Schulz, C.

Seefeldt, S.

A. Heyes, S. Seefeldt, and J. Feist, “Two-color phosphor thermometry for surface temperature measurement,” Opt. Laser Technol. 38(4-6), 257–265 (2006).
[CrossRef]

J. P. Feist, A. L. Heyes, and S. Seefeldt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” Proc. Instn. Mech. Engrs Part A: J. Power and Energy 217(2), 193–200 (2003).
[CrossRef]

J. P. Feist, A. L. Heyes, and S. Seefeldt, “Oxygen quenching of phosphorescence from thermographic phosphors,” Meas. Sci. Technol. 14(5), N17–N20 (2003).
[CrossRef]

Smith, A. A.

L. P. Goss, A. A. Smith, and M. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60(12), 3702–3706 (1989).
[CrossRef]

Sparrow, E. M.

N. Konopliv and E. M. Sparrow, “Transient heat conduction in non-homogeneous spherical systems,” Heat Mass Transfer 3, 197–210 (1970).

Takada, N.

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B-Lasers 96(2-3), 237–240 (2009).
[CrossRef]

Thurber, M. C.

Troiani, G.

F. Picano, F. Battista, G. Troiani, and C. M. Casciola, “Dynamics of PIV seeding particles in turbulent premixed flames,” Exp. Fluids 50(1), 75–88 (2011).
[CrossRef]

Wang, Y. H.

Y. H. Wang and Z. H. Zhang, “Luminescence thermal degradation mechanism in BaMgAl10 O17:Eu2+ phosphor,” Electrochem. Solid St. 8(11), H97–H99 (2005).
[CrossRef]

White, W. B.

D. Ravichandran, R. Roy, W. B. White, and S. Erdei, “Synthesis and characterization of sol-gel derived hexa-aluminate phosphors,” J. Mater. Res. 12(03), 819–824 (1997).
[CrossRef]

Yu, M.

M. Yu, G. Särner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol. 21(3), 4 (2010).
[CrossRef]

Zhang, Z. H.

Y. H. Wang and Z. H. Zhang, “Luminescence thermal degradation mechanism in BaMgAl10 O17:Eu2+ phosphor,” Electrochem. Solid St. 8(11), H97–H99 (2005).
[CrossRef]

AIAA J. (1)

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34(3), 442–448 (1996).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B-Lasers (5)

A. Omrane, P. Petersson, M. Aldén, and M. Linne, “Simultaneous two-dimensional flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B-Lasers 92, 99–102 (2008).
[CrossRef]

A. Omrane, G. Särner, and M. Aldén, “Two-dimensional temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B-Lasers 79, 431–434 (2004).
[CrossRef]

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B-Lasers 96(2-3), 237–240 (2009).
[CrossRef]

W. G. Bessler and C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B-Lasers 78(5), 519–533 (2004).
[CrossRef]

J. Brübach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B-Lasers 83(4), 499–502 (2006).
[CrossRef]

Appl. Phys. B-Lasers O. (1)

A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B-Lasers O. 106(2), 435–444 (2012).
[CrossRef]

Appl. Spectrosc. (1)

Combust. Flame (2)

D. Geyer, A. Kempf, A. Dreizler, and J. Janicka, “Turbulent opposed-jet flames: A critical benchmark experiment for combustion LES,” Combust. Flame 143(4), 524–548 (2005).
[CrossRef]

M. Glass and I. Kennedy, “An improved seeding method for high temperature laser doppler velocimetry,” Combust. Flame 29, 333–335 (1977).
[CrossRef]

Electrochem. Solid St. (1)

Y. H. Wang and Z. H. Zhang, “Luminescence thermal degradation mechanism in BaMgAl10 O17:Eu2+ phosphor,” Electrochem. Solid St. 8(11), H97–H99 (2005).
[CrossRef]

Exp. Fluids (1)

F. Picano, F. Battista, G. Troiani, and C. M. Casciola, “Dynamics of PIV seeding particles in turbulent premixed flames,” Exp. Fluids 50(1), 75–88 (2011).
[CrossRef]

Heat Mass Transfer (1)

N. Konopliv and E. M. Sparrow, “Transient heat conduction in non-homogeneous spherical systems,” Heat Mass Transfer 3, 197–210 (1970).

J. Appl. Phys. (1)

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3 Al5O12, and LaF3 in the range 77°K–300°K,” J. Appl. Phys. 38(4), 1603 (1967).
[CrossRef]

J. Mater. Res. (1)

D. Ravichandran, R. Roy, W. B. White, and S. Erdei, “Synthesis and characterization of sol-gel derived hexa-aluminate phosphors,” J. Mater. Res. 12(03), 819–824 (1997).
[CrossRef]

Meas. Sci. Technol. (5)

M. Yu, G. Särner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol. 21(3), 4 (2010).
[CrossRef]

J. P. Feist, A. L. Heyes, and S. Seefeldt, “Oxygen quenching of phosphorescence from thermographic phosphors,” Meas. Sci. Technol. 14(5), N17–N20 (2003).
[CrossRef]

J. Brübach, A. Dreizler, and J. Janicka, “Gas compositional and pressure effects on thermographic phosphor thermometry,” Meas. Sci. Technol. 18(3), 764–770 (2007).
[CrossRef]

A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Technol. 8(12), 1406–1416 (1997).
[CrossRef]

J. P. Feist and A. L. Heyes, “The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications,” Meas. Sci. Technol. 11(7), 942–947 (2000).
[CrossRef]

Opt. Express (2)

Opt. Laser Technol. (1)

A. Heyes, S. Seefeldt, and J. Feist, “Two-color phosphor thermometry for surface temperature measurement,” Opt. Laser Technol. 38(4-6), 257–265 (2006).
[CrossRef]

Opt. Lett. (2)

Proc. Combust. Inst. (4)

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[CrossRef]

C. F. Kaminski, J. Engtröm, and M. Alden, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).

J. Brübach, M. Hage, J. Janicka, and A. Dreizler, “Simultaneous phosphor and CARS thermometry at the wall-gas interface within a combustor,” Proc. Combust. Inst. 32(1), 855–861 (2009).
[CrossRef]

A. Omrane, F. Ossler, and M. Aldén, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst. 29(2), 2653–2659 (2002).
[CrossRef]

Proc. Instn. Mech. Engrs Part A: J. Power and Energy (1)

J. P. Feist, A. L. Heyes, and S. Seefeldt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” Proc. Instn. Mech. Engrs Part A: J. Power and Energy 217(2), 193–200 (2003).
[CrossRef]

Prog. Energ. Combust. (1)

M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: A survey of combustion applications,” Prog. Energ. Combust. 37(4), 422–461 (2011).
[CrossRef]

Rev. Sci. Instrum. (2)

S. Allison and G. Gillies, “Remote thermometry with thermographic phosphors: Instrumentation and applications,” Rev. Sci. Instrum. 68(7), 2615–2649 (1997).
[CrossRef]

L. P. Goss, A. A. Smith, and M. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60(12), 3702–3706 (1989).
[CrossRef]

Other (8)

R. Hasegawa, I. Sakata, H. Yanagihara, G. Särner, M. Richter, M. Aldén, and B. Johansson, “Two-dimensional temperature measurements in engine combustion using phosphor thermometry,” SAE Paper, 2007–01–1883, 1797–1803 (2007).

M. Raffel, C. Willert, S. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, 2nd ed. (Springer, 2007).

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, 2nd ed. (Academic Press, 1981).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach Publishers, 1990).

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).

J. Brübach, T. Kissel, and A. Dreizler, “Phosphor thermometry at an optically accessible internal combustion engine,” in Laser Applications to Chemical, Security and Environmental Analysis, (Optical Society of America, 2010), paper LWA5.

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Oxford Science Publications, 1989), 2nd ed.

W. Yen, S. Shionoya, and H. M. Yamamoto, Phosphor Handbook, 2nd ed. (CRC Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

BAM:Eu emission spectrum following 355 nm excitation, normalised to the emission band peak and recorded at 50 K intervals (1 nm spectral resolution). The measured transmission curves of the filters used in this study are superimposed on the spectrum.

Fig. 2
Fig. 2

(a) Particle (YAG) velocity after a step change in gas velocity at 2000 K. (b) Particle (YAG) temperature following a step change in gas temperature from 300 to 2000 K.

Fig. 3
Fig. 3

Experimental setup. λ/2: half wave plate; BSpol: polarizing beamsplitter; BS: beamsplitter; DM: dichroic mirror; SO: sheet optics; IF: interference filters and PBS: plate beamsplitter.

Fig. 4
Fig. 4

Phosphorescence emission intensity with increasing laser fluence in the gas phase and in the bulk powder.

Fig. 5
Fig. 5

Filtered phosphorescence emission intensity with increasing temperature.

Fig. 6
Fig. 6

Averages of 100 single shot temperature images for different jet conditions. (a)-(d) jet temperature T = 293, 483, 583 and 683 K.

Fig. 7
Fig. 7

(a) Intensity ratio response measured in the gas phase. (b) Comparison of horizontal temperature profiles measured during steady operation of the jet at 530 K.

Fig. 8
Fig. 8

Histograms of 600 independent temperature measurements for each steady jet temperature recorded near the nozzle exit. The number of samples at 293 K has been reduced by a factor of 4 for improved visualisation.

Fig. 9
Fig. 9

(a) Instantaneous temperature and velocity fluctuation image for a jet temperature of 530 K. (b) Average temperature and velocity fields compiled from 100 single shots.

Fig. 10
Fig. 10

(a) Instantaneous mixture fraction image corresponding to Fig. 9. (b) Average mixture fraction image, determined from the same time series shown above.

Tables (1)

Tables Icon

Table 1 Temperature Time Response and Steady State Radiation Error of YAG Particles

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ= ρ p d p 2 18 μ g
θ s = T p T p0 T g0 T p0
f(x,y,t)= I( x,y,t ) I ref ( t ) × σ ph ( T ref ( t ) ) σ ph ( T( x,y,t ) ) × T( x,y,t ) T ref ( t )

Metrics