Abstract

The passive optical components with very fine structures in wavelength domain are very sensitive to the mechanical vibrations or thermal fluctuations. If the measurement speed is lower than the temperature and mechanical fluctuation, we cannot measure the dynamic characteristics of the optical components. In this paper, we propose and demonstrate a novel method with ultra-fast measurement speed and high-resolution based on optical channel estimation using direct-detected orthogonal frequency division multiplexing (DD-OFDM) signal, which can be used to measure the dynamic characteristics and fine structure of the passive optical components. In experiment, by using fast Fourier transform (FFT) and a low-cost electro-absorption modulated laser (EML), we can achieve the transfer function characteristics with 3.9MHz resolution. Compared with the optical channel estimation using coherent OFDM signal reported before, the proposed measurement technique is cost-effective.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
    [CrossRef]
  2. M. Froggatt, E. Moore, and M. Wolfe, “Interferometric measurement of dispersion in optical components,” in Optical Fiber Communication Conference 2002, Paper WK1.
  3. T. Kawanishi, T. Sakamoto, and M. Izutsu, “Fast optical frequency sweep for ultra-fine real-time spectral domain measurement,” Electron. Lett. 42(17), 999–1000 (2006).
    [CrossRef]
  4. D. J. Krause, J. C. Cartledge, L. Jakober, and K. Roberts, “Measurement of passive optical components using a carrier and single sideband,” in Optical Fiber Communication Conference 2006, Paper OFN5.
  5. X. Yi, Z. Li, Y. Bao, and K. Qiu, “Characterization of passive optical components by DSP-based optical channel estimation,” IEEE Photon. Technol. Lett. 24(6), 443–445 (2012).
    [CrossRef]
  6. W. Peng, B. Zhang, K.-M. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol. 27(24), 5723–5735 (2009).
    [CrossRef]
  7. Z. Zan, M. Premaratne, and A. J. Lowery, “Laser RIN and linewidth re-quirements for direct detection optical OFDM,” in CLEO 2008, paper CWN2.
  8. K. Kikuchi, “Coherent transmission systems,” in Proc. ECOC, paper no. Th.2.A.1, 21–25, Belgium, 2008.
  9. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [CrossRef] [PubMed]
  10. W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come?” J. Opt. Netw. 7(3), 234–255 (2008).
    [CrossRef]
  11. M. Sieben, J. Conradi, and D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightwave Technol. 17(10), 1742–1749 (1999).
    [CrossRef]
  12. R. Dischler and F. Buchali, “Experimental assessment of a direct detection optical OFDM system targeting 10Gb/s and beyond,” in Optical Fiber Communication Conference 2008, Paper OMI2.
  13. J. Leibrich, A. Ali, and W. Rosenkranz, “Optical OFDM as a promising technique for bandwidth efficient high-speed data transmission over optical fiber,” in Int. OFDM-Workshop 2007, Hamburg, Germany.
  14. A. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conference 2006, paper PDP39.
  15. B. Schmidt, A. Lowery, and J. Armstrong, “Experimental demonstrations of 20 Gbit/s direct-detection optical OFDM and 12 Gbit/s with a colorless transmitter,” in Optical Fiber Communication Conference 2007, paper PDP18.
  16. W. Peng, X. Wu, A. Arbab, B. Shamee, L. Christen, J. Ynag, K. Feng, A. Willner, and S. Chi, “Experimental demonstration of a coherently modulated and directly detected optical OFDM system using an RF-tone insertion,” in Optical Fiber Communication Conference 2008, paper OMU2.
  17. A. Ali, H. Paul, J. Leibrich, W. Rosenkranz, and K. Kammeyer, “Optical biasing in direct detection optical-OFDM for improving receiver sensitivity,” in Optical Fiber Communication Conference 2010, paper JThA12.
  18. A. J. Lowery and J. Armstrong, “10 Gbit/s multimode fiber link using power-efficient orthogonal frequency-division-multiplexing,” Opt. Express 13(25), 10003–10009 (2005).
    [CrossRef] [PubMed]
  19. J. Li, K. Worms, R. Maestle, D. Hillerkuss, W. Freude, and J. Leuthold, “Free-space optical delay interferometer with tunable delay and phase,” Opt. Express 19(12), 11654–11666 (2011).
    [CrossRef] [PubMed]
  20. J. Li, K. Worms, D. Hillerkuss, B. Richter, R. Maestle, W. Freude, and J. Leuthold, “Tunable free space optical delay interferometer for demodulation of differential phase shift keying signals,” in Optical Fiber Communication Conference 2010, paper JWA24.

2012 (1)

X. Yi, Z. Li, Y. Bao, and K. Qiu, “Characterization of passive optical components by DSP-based optical channel estimation,” IEEE Photon. Technol. Lett. 24(6), 443–445 (2012).
[CrossRef]

2011 (1)

2009 (1)

2008 (2)

2006 (1)

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Fast optical frequency sweep for ultra-fine real-time spectral domain measurement,” Electron. Lett. 42(17), 999–1000 (2006).
[CrossRef]

2005 (1)

2001 (1)

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

1999 (1)

Armstrong, J.

Bao, H.

Bao, Y.

X. Yi, Z. Li, Y. Bao, and K. Qiu, “Characterization of passive optical components by DSP-based optical channel estimation,” IEEE Photon. Technol. Lett. 24(6), 443–445 (2012).
[CrossRef]

Chi, S.

Conradi, J.

Dodds, D. E.

Feng, K.-M.

Freude, W.

Hillerkuss, D.

Izutsu, M.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Fast optical frequency sweep for ultra-fine real-time spectral domain measurement,” Electron. Lett. 42(17), 999–1000 (2006).
[CrossRef]

Kawanishi, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Fast optical frequency sweep for ultra-fine real-time spectral domain measurement,” Electron. Lett. 42(17), 999–1000 (2006).
[CrossRef]

Leuthold, J.

Li, J.

Li, Z.

X. Yi, Z. Li, Y. Bao, and K. Qiu, “Characterization of passive optical components by DSP-based optical channel estimation,” IEEE Photon. Technol. Lett. 24(6), 443–445 (2012).
[CrossRef]

Lowery, A. J.

Ludvigsen, H.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

Ma, Y.

Maestle, R.

Niemi, T.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

Peng, W.

Qiu, K.

X. Yi, Z. Li, Y. Bao, and K. Qiu, “Characterization of passive optical components by DSP-based optical channel estimation,” IEEE Photon. Technol. Lett. 24(6), 443–445 (2012).
[CrossRef]

Sakamoto, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Fast optical frequency sweep for ultra-fine real-time spectral domain measurement,” Electron. Lett. 42(17), 999–1000 (2006).
[CrossRef]

Shieh, W.

Sieben, M.

Tang, Y.

Uusimaa, M.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

Willner, A. E.

Worms, K.

Wu, X.

Yang, Q.

Yi, X.

X. Yi, Z. Li, Y. Bao, and K. Qiu, “Characterization of passive optical components by DSP-based optical channel estimation,” IEEE Photon. Technol. Lett. 24(6), 443–445 (2012).
[CrossRef]

W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come?” J. Opt. Netw. 7(3), 234–255 (2008).
[CrossRef]

Zhang, B.

Electron. Lett. (1)

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Fast optical frequency sweep for ultra-fine real-time spectral domain measurement,” Electron. Lett. 42(17), 999–1000 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

X. Yi, Z. Li, Y. Bao, and K. Qiu, “Characterization of passive optical components by DSP-based optical channel estimation,” IEEE Photon. Technol. Lett. 24(6), 443–445 (2012).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Netw. (1)

Opt. Express (3)

Other (11)

J. Li, K. Worms, D. Hillerkuss, B. Richter, R. Maestle, W. Freude, and J. Leuthold, “Tunable free space optical delay interferometer for demodulation of differential phase shift keying signals,” in Optical Fiber Communication Conference 2010, paper JWA24.

R. Dischler and F. Buchali, “Experimental assessment of a direct detection optical OFDM system targeting 10Gb/s and beyond,” in Optical Fiber Communication Conference 2008, Paper OMI2.

J. Leibrich, A. Ali, and W. Rosenkranz, “Optical OFDM as a promising technique for bandwidth efficient high-speed data transmission over optical fiber,” in Int. OFDM-Workshop 2007, Hamburg, Germany.

A. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conference 2006, paper PDP39.

B. Schmidt, A. Lowery, and J. Armstrong, “Experimental demonstrations of 20 Gbit/s direct-detection optical OFDM and 12 Gbit/s with a colorless transmitter,” in Optical Fiber Communication Conference 2007, paper PDP18.

W. Peng, X. Wu, A. Arbab, B. Shamee, L. Christen, J. Ynag, K. Feng, A. Willner, and S. Chi, “Experimental demonstration of a coherently modulated and directly detected optical OFDM system using an RF-tone insertion,” in Optical Fiber Communication Conference 2008, paper OMU2.

A. Ali, H. Paul, J. Leibrich, W. Rosenkranz, and K. Kammeyer, “Optical biasing in direct detection optical-OFDM for improving receiver sensitivity,” in Optical Fiber Communication Conference 2010, paper JThA12.

Z. Zan, M. Premaratne, and A. J. Lowery, “Laser RIN and linewidth re-quirements for direct detection optical OFDM,” in CLEO 2008, paper CWN2.

K. Kikuchi, “Coherent transmission systems,” in Proc. ECOC, paper no. Th.2.A.1, 21–25, Belgium, 2008.

M. Froggatt, E. Moore, and M. Wolfe, “Interferometric measurement of dispersion in optical components,” in Optical Fiber Communication Conference 2002, Paper WK1.

D. J. Krause, J. C. Cartledge, L. Jakober, and K. Roberts, “Measurement of passive optical components using a carrier and single sideband,” in Optical Fiber Communication Conference 2006, Paper OFN5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup and DUT (device under test) (S/P: serial to parallel; P/S: parallel to serial; DDC: digital down-conversion; CP: cyclic prefix ratio; DUT: device under test.)

Fig. 2
Fig. 2

Optical OFDM spectrum after EAM modulation. (a) DSB modulated optical signal; (b) SSB modulated optical signal

Fig. 3
Fig. 3

Measured transfer function of a DI with 66.7MHz FSR. The resolution is 3.9MHz. (a) DD-OFDM method within 6GHz span, (b) CO-OFDM method within 6GHz span, (c) DD-OFDM method within 1GHz span in detail, (d) CO-OFDM method within 1GHz span in detail.

Fig. 4
Fig. 4

Reflective optical spectrum of FBG measurements by (a) Conventional laser scanning technique with 125MHz frequency resolution (b) DD-OFDM technique with 3.9 MHz frequency resolution of the red circle part.

Fig. 5
Fig. 5

Transmission optical spectrum of FBG measurements by (a) Conventional laser scanning technique with 125MHz frequency resolution (b) DD-OFDM technique with 3.9 MHz frequency resolution of the red circle part.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

s(t)= e j2π f 0 t +α e j2π( f 0 +Δf)t s B (t)
s B (t)= k= 1 2 N sc +1 1 2 N sc c k e j2π f k t
r(t)= s(tτ)h(τ)dτ = [ e j2π f 0 (tτ) +α e j2π( f 0 +Δf)(tτ) k= 1 2 N sc +1 1 2 N sc c k e j2π f k (tτ) ]h(τ)dτ = e j2π f 0 t h(τ) e j2π f 0 τ dτ +α e j2π( f 0 +Δf)t k= 1 2 N sc +1 1 2 N sc c k e j2π f k t h(τ) e j2π( f 0 +Δf+ f k )τ dτ
H(f)= h(τ) e j2πfτ dτ
r(t)=H( f 0 ) e j2π f 0 t +α e j2π( f 0 +Δf)t k= 1 2 N sc +1 1 2 N sc H( f 0 +Δf+ f k ) c k e j2π f k t
I(t) | r(t) | 2 = | H( f 0 ) | 2 +2αRe{ e j2πΔft k= 1 2 N sc +1 1 2 N sc [ | H( f 0 +Δf+ f k ) | e jϕ( f k ) c k ] received data e j2π f k t } +| α 2 | k 1 = 1 2 N sc +1 1 2 N sc k 2 = 1 2 N sc +1 1 2 N sc c k 2 * c k 1 e j(2π( f k 1 f k 2 )t) H( f 0 +Δf+ f k 1 )H ( f 0 +Δf+ f k 2 )

Metrics