Abstract

When exposing small particles on a substrate to a light plane wave, the scattered optical near field is spatially modulated and highly complex. We show, for the particular case of dielectric microspheres, that it is possible to image these optical near-field distributions in a quantitative way. By placing a single microsphere on a thin film of the photosensitive phase change material Ge2Sb5Te5 and exposing it to a single short laser pulse, the spatial intensity modulation of the near field is imprinted into the film as a pattern of different material phases. The resulting patterns are investigated by using optical as well as high-resolution scanning electron microscopy. Quantitative information on the local optical near field at each location is obtained by calibrating the material response to pulsed laser irradiation. We discuss the influence of polarization and angle of incidence of the laser beam as well as particle size on the field distribution. The experimental results are in good quantitative agreement with a model based on a rigorous solution of Maxwell’s equations. Our results have potential application to near-field optical lithography and experimental determination of near fields in complex nanostructures.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu, Optical Near Fields: Introduction to Classical and Quantum Theories of Electromagnetic Phenomena at the Nanoscale (Springer, 2004).
    [PubMed]
  2. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2005).
    [CrossRef]
  3. Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96, 261103 (2010).
    [CrossRef]
  4. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
    [CrossRef] [PubMed]
  5. H. J. Lezec, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  6. A. Kramer, W. Trabesinger, B. Hecht, and U. P. Wild, “Optical near-field enhancement at a metal tip probed by a single fluorophore,” Appl. Phys. Lett. 80, 1652–1654 (2002).
    [CrossRef]
  7. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [CrossRef] [PubMed]
  8. D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A 86, 313–314 (2007).
    [CrossRef]
  9. R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, and F. Träger, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem. 21, 4076–4081, (2011).
    [CrossRef]
  10. Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96, 6845–6850 (2004).
    [CrossRef]
  11. A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
    [CrossRef] [PubMed]
  12. P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85, 5370–5372 (2004).
    [CrossRef]
  13. P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5, 1825–1829 (2009).
    [CrossRef] [PubMed]
  14. J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
    [CrossRef]
  15. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
    [CrossRef] [PubMed]
  16. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21, 1450–1453 (1968).
    [CrossRef]
  17. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb5Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
    [CrossRef]
  18. Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
    [CrossRef]
  19. B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, and K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97, 1–8 (2005).
    [CrossRef]
  20. F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005).
    [CrossRef]
  21. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [CrossRef]
  22. J. M. Liu, “Simple technique for measurements of pulsed gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982).
    [CrossRef] [PubMed]
  23. B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A: Mater. Sci. Process. 79, 747–751 (2004).
    [CrossRef]
  24. J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
    [CrossRef]
  25. H. Ishikawa, H. Tamaru, and K. Miyano, “Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field,” J. Opt. Soc. Am. A 17, 802–813 (2000).
    [CrossRef]
  26. T. Sannomiya and C. Hafner, “Multiple multipole program modelling for nano plasmonic sensors,” J. Comput. Theor. Nanosci. 7, 1587–1595 (2010).
    [CrossRef]
  27. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
    [CrossRef]
  28. F. J. García de Abajo, A. Rivacoba, N. Zabala, and P. M. Echenique, “Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals,” Phys. Rev. B 68, 205105 (2003).
    [CrossRef]
  29. F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086–6102 (1999).
    [CrossRef]

2011 (2)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, and F. Träger, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem. 21, 4076–4081, (2011).
[CrossRef]

2010 (3)

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96, 261103 (2010).
[CrossRef]

J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
[CrossRef]

T. Sannomiya and C. Hafner, “Multiple multipole program modelling for nano plasmonic sensors,” J. Comput. Theor. Nanosci. 7, 1587–1595 (2010).
[CrossRef]

2009 (1)

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5, 1825–1829 (2009).
[CrossRef] [PubMed]

2008 (3)

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef] [PubMed]

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[CrossRef]

2007 (2)

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
[CrossRef] [PubMed]

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A 86, 313–314 (2007).
[CrossRef]

2006 (1)

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

2005 (3)

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, and K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97, 1–8 (2005).
[CrossRef]

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005).
[CrossRef]

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2005).
[CrossRef]

2004 (3)

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85, 5370–5372 (2004).
[CrossRef]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96, 6845–6850 (2004).
[CrossRef]

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A: Mater. Sci. Process. 79, 747–751 (2004).
[CrossRef]

2003 (1)

F. J. García de Abajo, A. Rivacoba, N. Zabala, and P. M. Echenique, “Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals,” Phys. Rev. B 68, 205105 (2003).
[CrossRef]

2002 (2)

H. J. Lezec, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

A. Kramer, W. Trabesinger, B. Hecht, and U. P. Wild, “Optical near-field enhancement at a metal tip probed by a single fluorophore,” Appl. Phys. Lett. 80, 1652–1654 (2002).
[CrossRef]

2001 (1)

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb5Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[CrossRef]

2000 (1)

1999 (1)

F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086–6102 (1999).
[CrossRef]

1998 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

1982 (1)

1968 (1)

R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21, 1450–1453 (1968).
[CrossRef]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Abelson, J.

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, and K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97, 1–8 (2005).
[CrossRef]

Afonso, C.

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5, 1825–1829 (2009).
[CrossRef] [PubMed]

Afonso, C. N.

J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
[CrossRef]

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[CrossRef]

Arnold, C. B.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef] [PubMed]

Bartels, C.

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85, 5370–5372 (2004).
[CrossRef]

Bäuerle, D.

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A 86, 313–314 (2007).
[CrossRef]

Baumert, T.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, and F. Träger, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem. 21, 4076–4081, (2011).
[CrossRef]

Bez, R.

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[CrossRef]

Bishop, S.

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, and K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97, 1–8 (2005).
[CrossRef]

Blanco, L. A.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005).
[CrossRef]

Boneberg, J.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2005).
[CrossRef]

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85, 5370–5372 (2004).
[CrossRef]

Borisov, A. G.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005).
[CrossRef]

Brodoceanu, D.

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A 86, 313–314 (2007).
[CrossRef]

Chaker, M.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

Chen, G. X.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Cheong, B.

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, and K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97, 1–8 (2005).
[CrossRef]

Chong, T. C.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96, 6845–6850 (2004).
[CrossRef]

Damman, P.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, and F. Träger, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem. 21, 4076–4081, (2011).
[CrossRef]

de Sande, J. C. G.

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[CrossRef]

Delaporte, P.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

Dorronsoro, C.

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[CrossRef]

Echenique, P. M.

F. J. García de Abajo, A. Rivacoba, N. Zabala, and P. M. Echenique, “Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals,” Phys. Rev. B 68, 205105 (2003).
[CrossRef]

Englert, L.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, and F. Träger, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem. 21, 4076–4081, (2011).
[CrossRef]

Fanciulli, M.

J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
[CrossRef]

Friedrich, I.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb5Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[CrossRef]

García de Abajo, F. J.

J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
[CrossRef]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5, 1825–1829 (2009).
[CrossRef] [PubMed]

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005).
[CrossRef]

F. J. García de Abajo, A. Rivacoba, N. Zabala, and P. M. Echenique, “Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals,” Phys. Rev. B 68, 205105 (2003).
[CrossRef]

F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086–6102 (1999).
[CrossRef]

Gawelda, W.

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[CrossRef]

Gómez-Santos, G.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005).
[CrossRef]

Grojo, D.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

Guay, D.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

Guo, W.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Hafner, C.

T. Sannomiya and C. Hafner, “Multiple multipole program modelling for nano plasmonic sensors,” J. Comput. Theor. Nanosci. 7, 1587–1595 (2010).
[CrossRef]

Hecht, B.

A. Kramer, W. Trabesinger, B. Hecht, and U. P. Wild, “Optical near-field enhancement at a metal tip probed by a single fluorophore,” Appl. Phys. Lett. 80, 1652–1654 (2002).
[CrossRef]

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Hong, M. H.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A: Mater. Sci. Process. 79, 747–751 (2004).
[CrossRef]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96, 6845–6850 (2004).
[CrossRef]

Hubenthal, F.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, and F. Träger, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem. 21, 4076–4081, (2011).
[CrossRef]

Ishikawa, H.

Kang, D.

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, and K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97, 1–8 (2005).
[CrossRef]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Kim, K.

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, and K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97, 1–8 (2005).
[CrossRef]

Kolaric, B.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, and F. Träger, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem. 21, 4076–4081, (2011).
[CrossRef]

König-Birk, J.

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85, 5370–5372 (2004).
[CrossRef]

Kotaidis, V.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2005).
[CrossRef]

Kramer, A.

A. Kramer, W. Trabesinger, B. Hecht, and U. P. Wild, “Optical near-field enhancement at a metal tip probed by a single fluorophore,” Appl. Phys. Lett. 80, 1652–1654 (2002).
[CrossRef]

Kühler, P.

J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
[CrossRef]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5, 1825–1829 (2009).
[CrossRef] [PubMed]

Landström, L.

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A 86, 313–314 (2007).
[CrossRef]

Lee, B.

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, and K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97, 1–8 (2005).
[CrossRef]

Leiderer, P.

J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
[CrossRef]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5, 1825–1829 (2009).
[CrossRef] [PubMed]

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85, 5370–5372 (2004).
[CrossRef]

Lezec, H. J.

H. J. Lezec, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Li, L.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Lim, C. S.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Lin, Y.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96, 6845–6850 (2004).
[CrossRef]

Liu, J. M.

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Longo, M.

J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
[CrossRef]

Lorenc, M.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2005).
[CrossRef]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Luk’yanchuk, B. S.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96, 6845–6850 (2004).
[CrossRef]

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A: Mater. Sci. Process. 79, 747–751 (2004).
[CrossRef]

McLeod, E.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef] [PubMed]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Miyano, K.

Modinos, A.

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Morarescu, R.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, and F. Träger, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem. 21, 4076–4081, (2011).
[CrossRef]

Mosbacher, M.

J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
[CrossRef]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5, 1825–1829 (2009).
[CrossRef] [PubMed]

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85, 5370–5372 (2004).
[CrossRef]

Obara, G.

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96, 261103 (2010).
[CrossRef]

Obara, M.

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96, 261103 (2010).
[CrossRef]

Ohtsu, M.

M. Ohtsu, Optical Near Fields: Introduction to Classical and Quantum Theories of Electromagnetic Phenomena at the Nanoscale (Springer, 2004).
[PubMed]

Ovshinsky, R.

R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21, 1450–1453 (1968).
[CrossRef]

Pereira, A.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

Pirovano, A.

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[CrossRef]

Plech, A.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2005).
[CrossRef]

Puerto, D.

J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
[CrossRef]

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[CrossRef]

Rivacoba, A.

F. J. García de Abajo, A. Rivacoba, N. Zabala, and P. M. Echenique, “Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals,” Phys. Rev. B 68, 205105 (2003).
[CrossRef]

Sannomiya, T.

T. Sannomiya and C. Hafner, “Multiple multipole program modelling for nano plasmonic sensors,” J. Comput. Theor. Nanosci. 7, 1587–1595 (2010).
[CrossRef]

Sentis, M.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

Shabanov, S. V.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005).
[CrossRef]

Shi, L. P.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Siegel, J.

J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
[CrossRef]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5, 1825–1829 (2009).
[CrossRef] [PubMed]

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[CrossRef]

Solis, J.

J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
[CrossRef]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5, 1825–1829 (2009).
[CrossRef] [PubMed]

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[CrossRef]

Song, W. D.

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A: Mater. Sci. Process. 79, 747–751 (2004).
[CrossRef]

Stefanou, N.

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Tamaru, H.

Tan, L. S.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Tanaka, Y.

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96, 261103 (2010).
[CrossRef]

Terakawa, M.

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96, 261103 (2010).
[CrossRef]

Trabesinger, W.

A. Kramer, W. Trabesinger, B. Hecht, and U. P. Wild, “Optical near-field enhancement at a metal tip probed by a single fluorophore,” Appl. Phys. Lett. 80, 1652–1654 (2002).
[CrossRef]

Träger, F.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, and F. Träger, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem. 21, 4076–4081, (2011).
[CrossRef]

Vallee, R. A. L.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, and F. Träger, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem. 21, 4076–4081, (2011).
[CrossRef]

Wang, Q. F.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96, 6845–6850 (2004).
[CrossRef]

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Wang, Z. B.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A: Mater. Sci. Process. 79, 747–751 (2004).
[CrossRef]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96, 6845–6850 (2004).
[CrossRef]

Weidenhof, V.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb5Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[CrossRef]

Wiemer, C.

J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
[CrossRef]

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[CrossRef]

Wild, U. P.

A. Kramer, W. Trabesinger, B. Hecht, and U. P. Wild, “Optical near-field enhancement at a metal tip probed by a single fluorophore,” Appl. Phys. Lett. 80, 1652–1654 (2002).
[CrossRef]

Wuttig, M.

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
[CrossRef] [PubMed]

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb5Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[CrossRef]

Yamada, N.

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
[CrossRef] [PubMed]

Yannopapas, V.

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Zabala, N.

F. J. García de Abajo, A. Rivacoba, N. Zabala, and P. M. Echenique, “Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals,” Phys. Rev. B 68, 205105 (2003).
[CrossRef]

Zenidaka, A.

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96, 261103 (2010).
[CrossRef]

Ziegler, S.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb5Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Appl. Phys. A (1)

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A 86, 313–314 (2007).
[CrossRef]

Appl. Phys. A: Mater. Sci. Process. (1)

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A: Mater. Sci. Process. 79, 747–751 (2004).
[CrossRef]

Appl. Phys. Lett. (5)

A. Kramer, W. Trabesinger, B. Hecht, and U. P. Wild, “Optical near-field enhancement at a metal tip probed by a single fluorophore,” Appl. Phys. Lett. 80, 1652–1654 (2002).
[CrossRef]

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96, 261103 (2010).
[CrossRef]

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85, 5370–5372 (2004).
[CrossRef]

J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96, 193108 (2010).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Comput. Phys. Commun. (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

J. Appl. Phys. (4)

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb5Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[CrossRef]

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[CrossRef]

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, and K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97, 1–8 (2005).
[CrossRef]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96, 6845–6850 (2004).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

T. Sannomiya and C. Hafner, “Multiple multipole program modelling for nano plasmonic sensors,” J. Comput. Theor. Nanosci. 7, 1587–1595 (2010).
[CrossRef]

J. Mater. Chem. (1)

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, and F. Träger, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem. 21, 4076–4081, (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef] [PubMed]

Nat. Phys. (1)

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2005).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

F. J. García de Abajo, A. Rivacoba, N. Zabala, and P. M. Echenique, “Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals,” Phys. Rev. B 68, 205105 (2003).
[CrossRef]

F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086–6102 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21, 1450–1453 (1968).
[CrossRef]

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005).
[CrossRef]

Science (1)

H. J. Lezec, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Small (2)

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5, 1825–1829 (2009).
[CrossRef] [PubMed]

Other (1)

M. Ohtsu, Optical Near Fields: Introduction to Classical and Quantum Theories of Electromagnetic Phenomena at the Nanoscale (Springer, 2004).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Setup used for irradiation with single laser pulses, including a home-built in-situ microscope and a movable stage holding the sample. The configuration of the layered substrate is also shown.

Fig. 2
Fig. 2

Optical response of a crystalline GST film to irradiation with single laser pulses of different durations. (a) Micrograph of the film exposed to irradiation at oblique incidence (τ = 350ps, θ = 53° off normal), producing an amorphous ring (regions I and II) around the spot center, where ablation of the GST has taken place (region III). Superimposed is the fluence distribution of the Gaussian beam at the sample surface and the relative reflectivity change of the film along the dashed line. (b) Relative reflectivity change of the sample as a function of the local fluence for different pulse durations. The inset shows the reflectivity change as a function of the thickness of the amorphized top layer of the GST film based on a model assuming interfacial amorphization.

Fig. 3
Fig. 3

Quantitative comparison between the optical near-field imprint produced by irradiation of a single dielectric sphere on the GST film and the corresponding calculation. (a) Optical micrograph of the GST film after irradiation with a 350ps pulse (θ = 53°) on a sphere (diameter d = 1.00μm), which was removed upon irradiation. The particle’s original position is marked with a white dot. Also shown is the corresponding calculated intensity distribution as well as the intensity profile along the white dashed line (both as insets). (b) Reflectivity profiles along the horizontal axis through the center of the sphere. The experimental data were taken along the black dashed line in (a). Calculated data are obtained from mapping the theoretical intensity profile shown in the inset of (a) into reflectivity values (see main text for details).

Fig. 4
Fig. 4

Near-field imprints from particles of different sizes. (a) Optical micrograph of the GST film after irradiation with a 350 ps pulse (θ = 53°) on a single sphere (d = 4.65μm). The calculated intensity distribution is shown as an inset. (b) Same as (a) for d = 1.00μm. (c) Same as (a) for d = 0.57μm. (d) Lower part: Calculated intensity distribution from (a). Upper part: Calculated intensity distribution for a particle diameter that is only 25nm smaller than in (a).

Fig. 5
Fig. 5

Near-field imprints of particles with diameter d = 1.00μm for different linear polarizations of the 350ps laser pulse. (a) Micrograph of a pattern produced with p-polarized light. The calculated intensity distribution is shown as an inset. (b) Same as (a) for s-polarized light. (c) Reflectivity profile along a line in the incident plane and through the particle center (at x = 0) in (a) and (b). (d) Corresponding calculated intensity profiles.

Fig. 6
Fig. 6

Upper part: Optical micrograph of a zoomed region of an irradiated area without particles (τ = 350ps). From right to left, the intensity increases and gives rise to different optical response of the sample: (i) crystalline GST film, (ii) partially amorphized GST film, (iii) completely amorphized GST film (iv) ablation of GST film, and (v) ablation of buffer layer. Lower part: SEM micrograph of the same irradiated spot. The darkened rectangular regions were investigated at higher resolution (see Fig. 7).

Fig. 7
Fig. 7

(a)–(c) SEM micrographs of the GST film in different states (marked in Fig. 6). (a) crystalline GST, (b) partially amorphized GST, and (c) completely amorphized GST. The Fourier transforms of all images (example shown for (b)), radially integrated and normalized, are plotted in the graphs below. The result from (c) mainly consists of background noise (see graph inset: signal vs. periodicity), which is common to all transforms and which was therefore subtracted from the results of (a) and (b), displaying signal difference versus periodicity in the plot.

Fig. 8
Fig. 8

SEM-micrographs of the near-field pattern of a particle (diameter d = 4645nm) at the position where it was located before irradiation (τ = 350ps). The corresponding calculated intensity distribution is shown as an inset in (a). (b) Upper part: taken from the SEM micrograph shown in (a). Lower part: taken from a SEM micrograph of a pattern of a particle with the same size but exposed to lower pulse energy.

Fig. 9
Fig. 9

Elements used in the description of the response of a homogeneous spherical particle of radius a sitting near a substrate. We eventually set b = a in the calculations reported in this paper.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( r ) = { e ^ p e i Q 0 R i q 0 z = m i m E Q 0 m p , for σ 0 = p polarization , e ^ s e i Q 0 R i q 0 z = m i m + 1 E Q 0 m s , for σ 0 = s polarization ,
E Q m s ± = [ i m Q R J m ( Q R ) R ^ J m ( Q R ) φ ^ ] e i m φ e ± i q z , E Q m p ± = ± q k [ i J m ( Q R ) R ^ m Q R J m ( Q R ) φ ^ ± Q q J m ( Q R ) z ^ ] e i m φ e ± i q z
E = E Q 0 m σ 0 + σ 0 Q d Q β Q σ E Q m σ + ,
E = σ 0 Q d Q γ Q σ [ E Q m σ + r Q σ E Q m σ + ] .
E = E Q 0 m σ 0 + σ 0 Q d Q γ Q σ r Q σ E Q m σ + + l σ α l σ E l m ν h ,
E l m M h = L h l m ( + ) ( r r 0 ) , E l m E h = ( i / k ) × L h l m ( + ) ( r r 0 )
E l m ν h = σ 0 Q d Q M Q σ , l ν ± E Q m σ ± ,
E Q m σ ± = l = | m | ν N l ν , Q σ ± E l m ν j ,
M Q p , l M ± = i M Q s , l E ± = e ± i q d i m + 1 q k [ ± q k ( ( l + m + 1 ) ( l m ) Y l , m + 1 + ( l m + 1 ) ( l + m ) Y l , m 1 ) 2 m Q k Y l , m ] , M Q s , l M ± = i M Q p , l E ± = ± e ± i q d i m + 1 q k ( ( l + m + 1 ) ( l m ) Y l , m + 1 ( l m + 1 ) ( l + m ) Y l , m 1 )
N Q σ , l ν ± = 2 π i ( 1 ) m + 1 ( ± q k ) l ( l + 1 ) e 2 i q d M Q σ , l ν ± ,
t l M = j l ( ρ 0 ) ρ 1 j l ( ρ 1 ) + ρ 0 j l ( ρ 0 ) j l ( ρ 1 ) h l ( + ) ( ρ 0 ) ρ 1 j l ( ρ 1 ) ρ 0 [ h l ( + ) ( ρ 0 ) ] j l ( ρ 1 ) , t l E = j l ( ρ 0 ) [ ρ 1 j l ( ρ 1 ) ] + ε [ ρ 0 j l ( ρ 0 ) ] j l ( ρ 1 ) h l ( + ) ( ρ 0 ) [ ρ 1 j l ( ρ 1 ) ] ε [ ρ 0 h l ( + ) ( ρ 0 ) ] j l ( ρ 1 ) ,
γ Q σ = δ σ σ 0 δ ( Q Q 0 ) Q + l ν M Q σ , l ν t l ν N l ν , Q 0 σ 0 + l ν M Q σ , l ν t l ν σ 0 Q d Q N l ν , Q σ + r Q σ γ Q σ ,
0 d Q F ( Q ) n F ( Q n ) Δ Q n .

Metrics