Abstract

Scales of the Papilio nireus combine fluorophores confined in a natural photonic structure. By means of numerical simulations based on the scattering-matrix formalism, we reveal the bi-functional optical role of this peculiar architecture. Two aspects are considered: the absorption of an incident light flux and the emission of another luminous flux. First, results highlight a light trapping effect and a light absorption increase in the ultraviolet, visible and near infrared ranges. Then, results highlight an enhanced fluorescence occurring in the spatial as well as in the frequency domain. This observation could be of great interest to design new optical devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  3. W. Shen, M. Li, L. Xu, S. Wang, L. Jiang, Y. Song, and D. Zhu, “Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay,” Biosens. Bioelectron. 26(5), 2165–2170 (2011).
    [CrossRef] [PubMed]
  4. P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82(16), 6854–6861 (2010).
    [CrossRef] [PubMed]
  5. J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing Fluorescent Concentrator Light Collection Efficiency by Restricting the Angular Emission Characteristic of the Incorporated Luminescent Material - the “Nano-Fluko” Concept,” Proc. SPIE 7725, 77250S, 77250S-11 (2010).
    [CrossRef]
  6. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007).
    [CrossRef] [PubMed]
  7. R. E. Galian, M. Laferriere, and J. C. Scaiano, “Doping of photonic crystal fibers with fluorescent probes: possible functional materials for optrode sensors,” J. Mater. Chem. 16, 1697–1701 (2006).
    [CrossRef]
  8. P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
    [CrossRef] [PubMed]
  9. G. W. Beccaloni, M. J. Scoble, G. S. Robinson, and B. Pitkin, “The Global Lepidoptera Names Index (LepIndex),” (Natural history museum, 2003) retrieved http://www.nhm.ac.uk/entomology/lepindex .
  10. T. Neubauer, “Butterflycorner - butterfly from all over the world,” retrieved http://en.butterflycorner.net .
  11. E. Silk, “Natural photonic crystals,” retrieved http://www.viewsfromscience.com/documents/webpages/natural_photonics_p2.html .
  12. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
    [CrossRef]
  13. O. Deparis and J. P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: The case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng. B 169(1-3), 12–15 (2010).
    [CrossRef]
  14. J. P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE 6128, 61281G, 61281G-10 (2006).
    [CrossRef]
  15. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
    [CrossRef]
  16. Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108(6), 063103 (2010).
    [CrossRef]
  17. O. Deparis, M. Rassart, C. Vandenbem, V. Welch, J. P. Vigneron, L. Dreesen, and S. Lucas, “Dielectric multilayer films fabricated by magnetron sputtering: how far can the iridescence be tuned?” Plasma Process. Polym. 6(S1), S746–S750 (2009).
    [CrossRef]
  18. S. N. Varnakov, A. S. Parshin, S. G. Ovchinnikov, D. Rafaja, L. Kalvoda, A. D. Balaev, and S. V. Komogortsev, “Structural and magnetic characteristics of Fe/Si bilayer and multilayer films obtained by thermal deposition in ultrahigh vacuum,” Tech. Phys. Lett. 31(11), 947–950 (2005).
    [CrossRef]
  19. M. Belotti, M. Galli, D. Bajoni, L. C. Andreani, G. Guizzetti, D. Decanini, and Y. Chen, “Investigation of SOI photonic crystals fabricated by both electron-beam lithography and nanoimprint lithography,” Microelectron. Eng. 73–74, 405–411 (2004).
    [CrossRef]
  20. D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002).
    [CrossRef]
  21. D. P. Gaillot, O. Deparis, V. Welch, B. K. Wagner, J. P. Vigneron, and C. J. Summers, “Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 031922 (2008).
    [CrossRef] [PubMed]
  22. T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, “Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films,” Bioinspir. Biomim. 3(4), 046004 (2008).
    [CrossRef] [PubMed]
  23. S. H. Kang, T. Y. Tai, and T. H. Fang, “Replication of butterfly wing microstructures using molding lithography,” Curr. Appl. Phys. 10(2), 625–630 (2010).
    [CrossRef]
  24. K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
    [CrossRef]
  25. I. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. Lond., B 79(534), 474–481 (1907).
    [CrossRef]
  26. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
    [CrossRef]

2011 (1)

W. Shen, M. Li, L. Xu, S. Wang, L. Jiang, Y. Song, and D. Zhu, “Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay,” Biosens. Bioelectron. 26(5), 2165–2170 (2011).
[CrossRef] [PubMed]

2010 (5)

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82(16), 6854–6861 (2010).
[CrossRef] [PubMed]

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing Fluorescent Concentrator Light Collection Efficiency by Restricting the Angular Emission Characteristic of the Incorporated Luminescent Material - the “Nano-Fluko” Concept,” Proc. SPIE 7725, 77250S, 77250S-11 (2010).
[CrossRef]

S. H. Kang, T. Y. Tai, and T. H. Fang, “Replication of butterfly wing microstructures using molding lithography,” Curr. Appl. Phys. 10(2), 625–630 (2010).
[CrossRef]

O. Deparis and J. P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: The case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng. B 169(1-3), 12–15 (2010).
[CrossRef]

Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108(6), 063103 (2010).
[CrossRef]

2009 (1)

O. Deparis, M. Rassart, C. Vandenbem, V. Welch, J. P. Vigneron, L. Dreesen, and S. Lucas, “Dielectric multilayer films fabricated by magnetron sputtering: how far can the iridescence be tuned?” Plasma Process. Polym. 6(S1), S746–S750 (2009).
[CrossRef]

2008 (3)

D. P. Gaillot, O. Deparis, V. Welch, B. K. Wagner, J. P. Vigneron, and C. J. Summers, “Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 031922 (2008).
[CrossRef] [PubMed]

T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, “Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films,” Bioinspir. Biomim. 3(4), 046004 (2008).
[CrossRef] [PubMed]

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

2007 (1)

2006 (2)

J. P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE 6128, 61281G, 61281G-10 (2006).
[CrossRef]

R. E. Galian, M. Laferriere, and J. C. Scaiano, “Doping of photonic crystal fibers with fluorescent probes: possible functional materials for optrode sensors,” J. Mater. Chem. 16, 1697–1701 (2006).
[CrossRef]

2005 (3)

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[CrossRef] [PubMed]

S. N. Varnakov, A. S. Parshin, S. G. Ovchinnikov, D. Rafaja, L. Kalvoda, A. D. Balaev, and S. V. Komogortsev, “Structural and magnetic characteristics of Fe/Si bilayer and multilayer films obtained by thermal deposition in ultrahigh vacuum,” Tech. Phys. Lett. 31(11), 947–950 (2005).
[CrossRef]

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

2004 (1)

M. Belotti, M. Galli, D. Bajoni, L. C. Andreani, G. Guizzetti, D. Decanini, and Y. Chen, “Investigation of SOI photonic crystals fabricated by both electron-beam lithography and nanoimprint lithography,” Microelectron. Eng. 73–74, 405–411 (2004).
[CrossRef]

2002 (1)

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002).
[CrossRef]

1999 (2)

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

1907 (1)

I. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. Lond., B 79(534), 474–481 (1907).
[CrossRef]

Agio, M.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002).
[CrossRef]

Andreani, L. C.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

M. Belotti, M. Galli, D. Bajoni, L. C. Andreani, G. Guizzetti, D. Decanini, and Y. Chen, “Investigation of SOI photonic crystals fabricated by both electron-beam lithography and nanoimprint lithography,” Microelectron. Eng. 73–74, 405–411 (2004).
[CrossRef]

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002).
[CrossRef]

Arribart, H.

T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, “Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films,” Bioinspir. Biomim. 3(4), 046004 (2008).
[CrossRef] [PubMed]

Bajoni, D.

M. Belotti, M. Galli, D. Bajoni, L. C. Andreani, G. Guizzetti, D. Decanini, and Y. Chen, “Investigation of SOI photonic crystals fabricated by both electron-beam lithography and nanoimprint lithography,” Microelectron. Eng. 73–74, 405–411 (2004).
[CrossRef]

Balaev, A. D.

S. N. Varnakov, A. S. Parshin, S. G. Ovchinnikov, D. Rafaja, L. Kalvoda, A. D. Balaev, and S. V. Komogortsev, “Structural and magnetic characteristics of Fe/Si bilayer and multilayer films obtained by thermal deposition in ultrahigh vacuum,” Tech. Phys. Lett. 31(11), 947–950 (2005).
[CrossRef]

Barth, M.

Belotti, M.

M. Belotti, M. Galli, D. Bajoni, L. C. Andreani, G. Guizzetti, D. Decanini, and Y. Chen, “Investigation of SOI photonic crystals fabricated by both electron-beam lithography and nanoimprint lithography,” Microelectron. Eng. 73–74, 405–411 (2004).
[CrossRef]

Benson, O.

Berthier, S.

T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, “Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films,” Bioinspir. Biomim. 3(4), 046004 (2008).
[CrossRef] [PubMed]

Blasi, B.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing Fluorescent Concentrator Light Collection Efficiency by Restricting the Angular Emission Characteristic of the Incorporated Luminescent Material - the “Nano-Fluko” Concept,” Proc. SPIE 7725, 77250S, 77250S-11 (2010).
[CrossRef]

Bollero, G.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82(16), 6854–6861 (2010).
[CrossRef] [PubMed]

Chauveau, V.

T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, “Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films,” Bioinspir. Biomim. 3(4), 046004 (2008).
[CrossRef] [PubMed]

Chen, Y.

M. Belotti, M. Galli, D. Bajoni, L. C. Andreani, G. Guizzetti, D. Decanini, and Y. Chen, “Investigation of SOI photonic crystals fabricated by both electron-beam lithography and nanoimprint lithography,” Microelectron. Eng. 73–74, 405–411 (2004).
[CrossRef]

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002).
[CrossRef]

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Cunningham, B. T.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82(16), 6854–6861 (2010).
[CrossRef] [PubMed]

Decanini, D.

M. Belotti, M. Galli, D. Bajoni, L. C. Andreani, G. Guizzetti, D. Decanini, and Y. Chen, “Investigation of SOI photonic crystals fabricated by both electron-beam lithography and nanoimprint lithography,” Microelectron. Eng. 73–74, 405–411 (2004).
[CrossRef]

Deparis, O.

O. Deparis and J. P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: The case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng. B 169(1-3), 12–15 (2010).
[CrossRef]

O. Deparis, M. Rassart, C. Vandenbem, V. Welch, J. P. Vigneron, L. Dreesen, and S. Lucas, “Dielectric multilayer films fabricated by magnetron sputtering: how far can the iridescence be tuned?” Plasma Process. Polym. 6(S1), S746–S750 (2009).
[CrossRef]

D. P. Gaillot, O. Deparis, V. Welch, B. K. Wagner, J. P. Vigneron, and C. J. Summers, “Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 031922 (2008).
[CrossRef] [PubMed]

Dreesen, L.

O. Deparis, M. Rassart, C. Vandenbem, V. Welch, J. P. Vigneron, L. Dreesen, and S. Lucas, “Dielectric multilayer films fabricated by magnetron sputtering: how far can the iridescence be tuned?” Plasma Process. Polym. 6(S1), S746–S750 (2009).
[CrossRef]

Fang, T. H.

S. H. Kang, T. Y. Tai, and T. H. Fang, “Replication of butterfly wing microstructures using molding lithography,” Curr. Appl. Phys. 10(2), 625–630 (2010).
[CrossRef]

Gaillot, D. P.

D. P. Gaillot, O. Deparis, V. Welch, B. K. Wagner, J. P. Vigneron, and C. J. Summers, “Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 031922 (2008).
[CrossRef] [PubMed]

Galian, R. E.

R. E. Galian, M. Laferriere, and J. C. Scaiano, “Doping of photonic crystal fibers with fluorescent probes: possible functional materials for optrode sensors,” J. Mater. Chem. 16, 1697–1701 (2006).
[CrossRef]

Galli, M.

M. Belotti, M. Galli, D. Bajoni, L. C. Andreani, G. Guizzetti, D. Decanini, and Y. Chen, “Investigation of SOI photonic crystals fabricated by both electron-beam lithography and nanoimprint lithography,” Microelectron. Eng. 73–74, 405–411 (2004).
[CrossRef]

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002).
[CrossRef]

Ganesh, N.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82(16), 6854–6861 (2010).
[CrossRef] [PubMed]

Gerace, D.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Goldschmidt, J. C.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing Fluorescent Concentrator Light Collection Efficiency by Restricting the Angular Emission Characteristic of the Incorporated Luminescent Material - the “Nano-Fluko” Concept,” Proc. SPIE 7725, 77250S, 77250S-11 (2010).
[CrossRef]

Gonzalez, D. O.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82(16), 6854–6861 (2010).
[CrossRef] [PubMed]

Guizzetti, G.

M. Belotti, M. Galli, D. Bajoni, L. C. Andreani, G. Guizzetti, D. Decanini, and Y. Chen, “Investigation of SOI photonic crystals fabricated by both electron-beam lithography and nanoimprint lithography,” Microelectron. Eng. 73–74, 405–411 (2004).
[CrossRef]

Gutmann, J.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing Fluorescent Concentrator Light Collection Efficiency by Restricting the Angular Emission Characteristic of the Incorporated Luminescent Material - the “Nano-Fluko” Concept,” Proc. SPIE 7725, 77250S, 77250S-11 (2010).
[CrossRef]

Haruyama, Y.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Hermle, M.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing Fluorescent Concentrator Light Collection Efficiency by Restricting the Angular Emission Characteristic of the Incorporated Luminescent Material - the “Nano-Fluko” Concept,” Proc. SPIE 7725, 77250S, 77250S-11 (2010).
[CrossRef]

Hooper, I.

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[CrossRef] [PubMed]

Hoshino, T.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Jiang, L.

W. Shen, M. Li, L. Xu, S. Wang, L. Jiang, Y. Song, and D. Zhu, “Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay,” Biosens. Bioelectron. 26(5), 2165–2170 (2011).
[CrossRef] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Jones, S. I.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82(16), 6854–6861 (2010).
[CrossRef] [PubMed]

Kaito, T.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Kalvoda, L.

S. N. Varnakov, A. S. Parshin, S. G. Ovchinnikov, D. Rafaja, L. Kalvoda, A. D. Balaev, and S. V. Komogortsev, “Structural and magnetic characteristics of Fe/Si bilayer and multilayer films obtained by thermal deposition in ultrahigh vacuum,” Tech. Phys. Lett. 31(11), 947–950 (2005).
[CrossRef]

Kanda, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Kang, S. H.

S. H. Kang, T. Y. Tai, and T. H. Fang, “Replication of butterfly wing microstructures using molding lithography,” Curr. Appl. Phys. 10(2), 625–630 (2010).
[CrossRef]

Komogortsev, S. V.

S. N. Varnakov, A. S. Parshin, S. G. Ovchinnikov, D. Rafaja, L. Kalvoda, A. D. Balaev, and S. V. Komogortsev, “Structural and magnetic characteristics of Fe/Si bilayer and multilayer films obtained by thermal deposition in ultrahigh vacuum,” Tech. Phys. Lett. 31(11), 947–950 (2005).
[CrossRef]

Laferriere, M.

R. E. Galian, M. Laferriere, and J. C. Scaiano, “Doping of photonic crystal fibers with fluorescent probes: possible functional materials for optrode sensors,” J. Mater. Chem. 16, 1697–1701 (2006).
[CrossRef]

Lalanne, P.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002).
[CrossRef]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Li, M.

W. Shen, M. Li, L. Xu, S. Wang, L. Jiang, Y. Song, and D. Zhu, “Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay,” Biosens. Bioelectron. 26(5), 2165–2170 (2011).
[CrossRef] [PubMed]

Liscidini, M.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Lousse, V.

J. P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE 6128, 61281G, 61281G-10 (2006).
[CrossRef]

Lucas, S.

O. Deparis, M. Rassart, C. Vandenbem, V. Welch, J. P. Vigneron, L. Dreesen, and S. Lucas, “Dielectric multilayer films fabricated by magnetron sputtering: how far can the iridescence be tuned?” Plasma Process. Polym. 6(S1), S746–S750 (2009).
[CrossRef]

Marabelli, F.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002).
[CrossRef]

Mathias, P. C.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82(16), 6854–6861 (2010).
[CrossRef] [PubMed]

Matsui, S.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Ovchinnikov, S. G.

S. N. Varnakov, A. S. Parshin, S. G. Ovchinnikov, D. Rafaja, L. Kalvoda, A. D. Balaev, and S. V. Komogortsev, “Structural and magnetic characteristics of Fe/Si bilayer and multilayer films obtained by thermal deposition in ultrahigh vacuum,” Tech. Phys. Lett. 31(11), 947–950 (2005).
[CrossRef]

Parshin, A. S.

S. N. Varnakov, A. S. Parshin, S. G. Ovchinnikov, D. Rafaja, L. Kalvoda, A. D. Balaev, and S. V. Komogortsev, “Structural and magnetic characteristics of Fe/Si bilayer and multilayer films obtained by thermal deposition in ultrahigh vacuum,” Tech. Phys. Lett. 31(11), 947–950 (2005).
[CrossRef]

Patrini, M.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002).
[CrossRef]

Peroz, C.

T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, “Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films,” Bioinspir. Biomim. 3(4), 046004 (2008).
[CrossRef] [PubMed]

Peters, M.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing Fluorescent Concentrator Light Collection Efficiency by Restricting the Angular Emission Characteristic of the Incorporated Luminescent Material - the “Nano-Fluko” Concept,” Proc. SPIE 7725, 77250S, 77250S-11 (2010).
[CrossRef]

Peyrade, D.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002).
[CrossRef]

Rafaja, D.

S. N. Varnakov, A. S. Parshin, S. G. Ovchinnikov, D. Rafaja, L. Kalvoda, A. D. Balaev, and S. V. Komogortsev, “Structural and magnetic characteristics of Fe/Si bilayer and multilayer films obtained by thermal deposition in ultrahigh vacuum,” Tech. Phys. Lett. 31(11), 947–950 (2005).
[CrossRef]

Rassart, M.

O. Deparis, M. Rassart, C. Vandenbem, V. Welch, J. P. Vigneron, L. Dreesen, and S. Lucas, “Dielectric multilayer films fabricated by magnetron sputtering: how far can the iridescence be tuned?” Plasma Process. Polym. 6(S1), S746–S750 (2009).
[CrossRef]

Saison, T.

T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, “Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films,” Bioinspir. Biomim. 3(4), 046004 (2008).
[CrossRef] [PubMed]

Sambles, J. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Scaiano, J. C.

R. E. Galian, M. Laferriere, and J. C. Scaiano, “Doping of photonic crystal fibers with fluorescent probes: possible functional materials for optrode sensors,” J. Mater. Chem. 16, 1697–1701 (2006).
[CrossRef]

Shen, W.

W. Shen, M. Li, L. Xu, S. Wang, L. Jiang, Y. Song, and D. Zhu, “Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay,” Biosens. Bioelectron. 26(5), 2165–2170 (2011).
[CrossRef] [PubMed]

Silberstein, E.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002).
[CrossRef]

Sipe, J. E.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Smolka, S.

Sollas, I.

I. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. Lond., B 79(534), 474–481 (1907).
[CrossRef]

Sondergard, E.

T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, “Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films,” Bioinspir. Biomim. 3(4), 046004 (2008).
[CrossRef] [PubMed]

Song, Y.

W. Shen, M. Li, L. Xu, S. Wang, L. Jiang, Y. Song, and D. Zhu, “Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay,” Biosens. Bioelectron. 26(5), 2165–2170 (2011).
[CrossRef] [PubMed]

Steidl, L.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing Fluorescent Concentrator Light Collection Efficiency by Restricting the Angular Emission Characteristic of the Incorporated Luminescent Material - the “Nano-Fluko” Concept,” Proc. SPIE 7725, 77250S, 77250S-11 (2010).
[CrossRef]

Summers, C. J.

D. P. Gaillot, O. Deparis, V. Welch, B. K. Wagner, J. P. Vigneron, and C. J. Summers, “Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 031922 (2008).
[CrossRef] [PubMed]

Tai, T. Y.

S. H. Kang, T. Y. Tai, and T. H. Fang, “Replication of butterfly wing microstructures using molding lithography,” Curr. Appl. Phys. 10(2), 625–630 (2010).
[CrossRef]

Talneau, A.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002).
[CrossRef]

Vandenbem, C.

O. Deparis, M. Rassart, C. Vandenbem, V. Welch, J. P. Vigneron, L. Dreesen, and S. Lucas, “Dielectric multilayer films fabricated by magnetron sputtering: how far can the iridescence be tuned?” Plasma Process. Polym. 6(S1), S746–S750 (2009).
[CrossRef]

Varnakov, S. N.

S. N. Varnakov, A. S. Parshin, S. G. Ovchinnikov, D. Rafaja, L. Kalvoda, A. D. Balaev, and S. V. Komogortsev, “Structural and magnetic characteristics of Fe/Si bilayer and multilayer films obtained by thermal deposition in ultrahigh vacuum,” Tech. Phys. Lett. 31(11), 947–950 (2005).
[CrossRef]

Vigneron, J. P.

O. Deparis and J. P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: The case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng. B 169(1-3), 12–15 (2010).
[CrossRef]

O. Deparis, M. Rassart, C. Vandenbem, V. Welch, J. P. Vigneron, L. Dreesen, and S. Lucas, “Dielectric multilayer films fabricated by magnetron sputtering: how far can the iridescence be tuned?” Plasma Process. Polym. 6(S1), S746–S750 (2009).
[CrossRef]

D. P. Gaillot, O. Deparis, V. Welch, B. K. Wagner, J. P. Vigneron, and C. J. Summers, “Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 031922 (2008).
[CrossRef] [PubMed]

J. P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE 6128, 61281G, 61281G-10 (2006).
[CrossRef]

Vodkin, L. O.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82(16), 6854–6861 (2010).
[CrossRef] [PubMed]

Vukusic, P.

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Wagner, B. K.

D. P. Gaillot, O. Deparis, V. Welch, B. K. Wagner, J. P. Vigneron, and C. J. Summers, “Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 031922 (2008).
[CrossRef] [PubMed]

Wang, G.

Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108(6), 063103 (2010).
[CrossRef]

Wang, S.

W. Shen, M. Li, L. Xu, S. Wang, L. Jiang, Y. Song, and D. Zhu, “Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay,” Biosens. Bioelectron. 26(5), 2165–2170 (2011).
[CrossRef] [PubMed]

Wang, X. H.

Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108(6), 063103 (2010).
[CrossRef]

Watanabe, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Welch, V.

O. Deparis, M. Rassart, C. Vandenbem, V. Welch, J. P. Vigneron, L. Dreesen, and S. Lucas, “Dielectric multilayer films fabricated by magnetron sputtering: how far can the iridescence be tuned?” Plasma Process. Polym. 6(S1), S746–S750 (2009).
[CrossRef]

D. P. Gaillot, O. Deparis, V. Welch, B. K. Wagner, J. P. Vigneron, and C. J. Summers, “Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 031922 (2008).
[CrossRef] [PubMed]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Wu, H. Y.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82(16), 6854–6861 (2010).
[CrossRef] [PubMed]

Xu, L.

W. Shen, M. Li, L. Xu, S. Wang, L. Jiang, Y. Song, and D. Zhu, “Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay,” Biosens. Bioelectron. 26(5), 2165–2170 (2011).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yang, F.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82(16), 6854–6861 (2010).
[CrossRef] [PubMed]

Zentel, R.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing Fluorescent Concentrator Light Collection Efficiency by Restricting the Angular Emission Characteristic of the Incorporated Luminescent Material - the “Nano-Fluko” Concept,” Proc. SPIE 7725, 77250S, 77250S-11 (2010).
[CrossRef]

Zhao, Y.

Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108(6), 063103 (2010).
[CrossRef]

Zhu, D.

W. Shen, M. Li, L. Xu, S. Wang, L. Jiang, Y. Song, and D. Zhu, “Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay,” Biosens. Bioelectron. 26(5), 2165–2170 (2011).
[CrossRef] [PubMed]

Anal. Chem. (1)

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82(16), 6854–6861 (2010).
[CrossRef] [PubMed]

Bioinspir. Biomim. (1)

T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, “Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films,” Bioinspir. Biomim. 3(4), 046004 (2008).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

W. Shen, M. Li, L. Xu, S. Wang, L. Jiang, Y. Song, and D. Zhu, “Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay,” Biosens. Bioelectron. 26(5), 2165–2170 (2011).
[CrossRef] [PubMed]

Curr. Appl. Phys. (1)

S. H. Kang, T. Y. Tai, and T. H. Fang, “Replication of butterfly wing microstructures using molding lithography,” Curr. Appl. Phys. 10(2), 625–630 (2010).
[CrossRef]

J. Appl. Phys. (1)

Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108(6), 063103 (2010).
[CrossRef]

J. Mater. Chem. (1)

R. E. Galian, M. Laferriere, and J. C. Scaiano, “Doping of photonic crystal fibers with fluorescent probes: possible functional materials for optrode sensors,” J. Mater. Chem. 16, 1697–1701 (2006).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Mater. Sci. Eng. B (1)

O. Deparis and J. P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: The case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng. B 169(1-3), 12–15 (2010).
[CrossRef]

Microelectron. Eng. (2)

M. Belotti, M. Galli, D. Bajoni, L. C. Andreani, G. Guizzetti, D. Decanini, and Y. Chen, “Investigation of SOI photonic crystals fabricated by both electron-beam lithography and nanoimprint lithography,” Microelectron. Eng. 73–74, 405–411 (2004).
[CrossRef]

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. P. Gaillot, O. Deparis, V. Welch, B. K. Wagner, J. P. Vigneron, and C. J. Summers, “Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 031922 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Plasma Process. Polym. (1)

O. Deparis, M. Rassart, C. Vandenbem, V. Welch, J. P. Vigneron, L. Dreesen, and S. Lucas, “Dielectric multilayer films fabricated by magnetron sputtering: how far can the iridescence be tuned?” Plasma Process. Polym. 6(S1), S746–S750 (2009).
[CrossRef]

Proc. Biol. Sci. (1)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Proc. R. Soc. Lond., B (1)

I. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. Lond., B 79(534), 474–481 (1907).
[CrossRef]

Proc. SPIE (2)

J. P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE 6128, 61281G, 61281G-10 (2006).
[CrossRef]

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing Fluorescent Concentrator Light Collection Efficiency by Restricting the Angular Emission Characteristic of the Incorporated Luminescent Material - the “Nano-Fluko” Concept,” Proc. SPIE 7725, 77250S, 77250S-11 (2010).
[CrossRef]

Science (1)

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[CrossRef] [PubMed]

Tech. Phys. Lett. (1)

S. N. Varnakov, A. S. Parshin, S. G. Ovchinnikov, D. Rafaja, L. Kalvoda, A. D. Balaev, and S. V. Komogortsev, “Structural and magnetic characteristics of Fe/Si bilayer and multilayer films obtained by thermal deposition in ultrahigh vacuum,” Tech. Phys. Lett. 31(11), 947–950 (2005).
[CrossRef]

Other (3)

G. W. Beccaloni, M. J. Scoble, G. S. Robinson, and B. Pitkin, “The Global Lepidoptera Names Index (LepIndex),” (Natural history museum, 2003) retrieved http://www.nhm.ac.uk/entomology/lepindex .

T. Neubauer, “Butterflycorner - butterfly from all over the world,” retrieved http://en.butterflycorner.net .

E. Silk, “Natural photonic crystals,” retrieved http://www.viewsfromscience.com/documents/webpages/natural_photonics_p2.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Scanning electron microscope image of an isolated colored scale in the Papilio nireus showing cylinder edges and ridges (R). (b) Transmission electron microscope image of a scale’s section showing perfectly the two surfaces of the scale. The lower one is the distributed Bragg reflector (DBR) while the upper one is the bi-dimensional photonic crystal (2D PC) overhung by a set of ridges. Trabeculae (T) maintain the spacing between both surfaces. (c) Transmission electron microscope image showing a detailed view of the distributed Bragg reflector. (d) Scanning microscope image of a top view of a scale showing the bi-dimensional photonic crystal overhung by parallel ridges. (e) Scanning microscope image showing a detailed view of the top of PC 2D showing a distribution of hollow cylinders according a hexagonal lattice. Parts (a), (b), (c) and (e) are from [8]. Reprinted with permission from AAAS. Part (d) is from [11]. Reprinted with permission from the author.

Fig. 2
Fig. 2

Idealized schematic representation of the natural photonic structure found in the scales of the Papilio nireus. R indicates the ridges, T indicates the trabeculae and * indicates the lamellae.

Fig. 3
Fig. 3

(a) Orientation of the wing in the axis system (macroscopic point of view). The wing was placed in the xy plane, the y-axis pointing from the termen to the base of the wing. The z-axis is normal to the wing. The light propagation direction is defined by two angles: θx, named polar angle, is the angle between the normal to the sample and the light propagation direction while φx is the azimuth angle, counted counterclockwise from the x-axis. The index “x” is either “i” in the case of the incidence or “d” in the case of the detection. (b) Orientation of the photonic structure in the axis system (microscopic point of view).

Fig. 4
Fig. 4

Spectral representation of the gain Q calculated from the absorbance spectra Asyst(λ) of the Papilio nireus system (DBR and 2D PC) and the absorbance spectra Ahom(λ) of an equivalent homogeneous layer: Q = (Asyst(λ) – Ahom(λ))/ Ahom(λ). The incident light is normal to the sample.

Fig. 5
Fig. 5

(a) Azimuth and polar angular distribution of normalized emission (log. scale) for an idealized Papilio-like system (DBR and 2D PC) containing a planar source inserted at mid-height of the 2D PC. The emission wavelength is 505 nm. The current density vector is (1,0,0). A sixfold symmetry of the pattern is detected (the spots are numbered in the diagram), reflecting the hexagonal disposition of the air cylinders in the chitin host medium. (b) Optical model of the involved system. Only the two-dimensional photonic structure and the distributed Bragg reflector are considered. The emitting planar source is represented in yellow.

Fig. 6
Fig. 6

(a) Azimuth and polar angular distribution of normalized emission (log. scale) for an idealized Papilio-like system (DBR and 2D PC) containing a planar source inserted at mid-height of the 2D PC. The emission wavelength is 505 nm. The current density vector is (a) (1,0,0) and (b) (0,0,1). We draw the attention of the reader on the fact that the Fig. 5(a) and the Fig. 6(a) are the same, except that the scale is slightly different. The dotted circles indicate the points of comparison between both diagrams.

Fig. 7
Fig. 7

(a) Spectral representation of the electromagnetic flux emitted by the scale of the Papilio nireus and integrated in all external spatial directions. The set of points is fitted by spline adjustment and the resulting curve is normalized. (b) Normalized emission spectra of the fluorescent molecules presents in the scales of the Papilio nireus [8]. In light grey is represented the band gap, deduced from the 2D PC photonic band diagram calculation [8]. The I area corresponds to wavelengths lying in the band gap, while the II area corresponds to wavelengths lying out of the band gap. (c) Schematic representation of the emission process for the I area. The 2D PC inhibits light propagation in the crystal plane and favors the out-of-plane emission. Hence, the value of the emitted flux integrated in all external spatial directions, as illustrated by the grey circle arc, is important. (d) Schematic representation of the emission process for the II area. The light propagation can be in all spatial directions, in the crystal plane as out of the crystal plane. Hence, the value of the external emitted flux obtained in this configuration is smaller than one obtained for the other configuration.

Metrics