Abstract

We report the first short-pulse amplification results to several hundred millijoule energies in ceramic Yb:LuAG. We have demonstrated ns-pulse output from a diode-pumped Yb:LuAG amplifier at a maximum energy of 580 mJ and a peak optical-to-optical efficiency of 28% at 550 mJ. In cavity dumped operation of a nanosecond oscillator we obtained 1 mJ at up to 100 Hz repetition rate. A gain bandwidth of 5.4 nm was achieved at room temperature by measuring the small-signal single-pass gain. Furthermore, we compared our results with Yb:YAG within the same amplifier system.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Metzger, A. Schwarz, C. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 342123–2125 (2009).
    [CrossRef] [PubMed]
  2. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Quantum Electron. (ST) 13, 598–609 (2007).
    [CrossRef]
  3. D. Albach, J.-C. Chanteloup, and G. L. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17, 3792–3801 (2009).
    [CrossRef] [PubMed]
  4. J. Mende, G. Spindler, J. Speiser, and A. Giesen, “Concept of neutral gain modules for power scaling of thin-disk lasers,” Appl. Phys. B 97, 307–315 (2009).
    [CrossRef]
  5. A. Curtis, B. Reagan, K. Wernsing, F. Furch, B. Luther, and J. Rocca, “Demonstration of a compact 100 Hz, 0.1 J, diode-pumped picosecond laser,” Opt. Lett. 36, 2164–2166 (2011).
    [CrossRef] [PubMed]
  6. K. Beil, S. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18, 20712–20722 (2010).
    [CrossRef] [PubMed]
  7. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676–683 (2006).
    [CrossRef]
  8. D. Sumida, T. Fan, and R. Hutcheson, “Spectroscopy and diode-pumped lasing of Yb3+-doped Lu3Al5O12 (Yb:LuAG),” Advanced Solid State Lasers 24, 348–350 (1995).
  9. H. Nakao, A. Shirakawa, K.-I. Ueda, H. Yagi, and T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express 20, 15385–15391 (2012).
    [CrossRef] [PubMed]
  10. C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9, 30–34 (2012).
    [CrossRef]
  11. A. Toncelli, M. Alshourbagy, and M. Tonelli, “Optical properties of Yb3+ doped Lu3Al5O12 crystal fibers grown by μ-pulling down technique,” J. Appl. Phys. 104, 104916 (2008).
    [CrossRef]
  12. J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34, 1378–1380 (2009).
    [CrossRef] [PubMed]
  13. I. B. Mukhin, A. Vyatkin, E. Perevezentsev, O. Vadimova, O. Palashov, and E. Khazanov, “Sub-joule level high repetition rate cryogenic disk laser,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CWP6.
  14. F. J. Furch, B. A. Reagan, B. M. Luther, A. H. Curtis, S. P. Meehan, and J. J. Rocca, “Demonstration of an all-diode-pumped soft x-ray laser,” Opt. Lett. 34, 3352–3354 (2009).
    [CrossRef] [PubMed]
  15. D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the LUCIA laser system,” J. Phys. 244, 032015 (2010).
  16. M. Siebold, J. Hein, C. Wandt, S. Klingebiel, F. Krausz, and S. Karsch, “High-energy, diode-pumped, nanosecond Yb:YAG MOPA system,” Opt. Express 16, 3674–3679 (2008).
    [CrossRef] [PubMed]
  17. M. Siebold, M. Loeser, U. Schramm, J. Koerner, M. Wolf, M. Hellwing, J. Hein, and K. Ertel, “High-efficiency, room-temperature nanosecond Yb:YAG laser,” Opt. Express 17, 19887–19893 (2009).
    [CrossRef] [PubMed]
  18. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. C. Collier, “High efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multi-slab amplifier,” Opt. Lett. 37, 2175–2177 (2012).
    [CrossRef] [PubMed]
  19. M. Loeser, M. Siebold, F. Roeser, and U. Schramm, “High energy CPA-free picosecond Yb:YAG amplifier,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AM4A.16.
  20. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Quantum Electron. (ST) 6, 650–657 (2000).
    [CrossRef]

2012 (3)

2011 (1)

2010 (2)

K. Beil, S. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18, 20712–20722 (2010).
[CrossRef] [PubMed]

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the LUCIA laser system,” J. Phys. 244, 032015 (2010).

2009 (6)

2008 (2)

M. Siebold, J. Hein, C. Wandt, S. Klingebiel, F. Krausz, and S. Karsch, “High-energy, diode-pumped, nanosecond Yb:YAG MOPA system,” Opt. Express 16, 3674–3679 (2008).
[CrossRef] [PubMed]

A. Toncelli, M. Alshourbagy, and M. Tonelli, “Optical properties of Yb3+ doped Lu3Al5O12 crystal fibers grown by μ-pulling down technique,” J. Appl. Phys. 104, 104916 (2008).
[CrossRef]

2007 (1)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Quantum Electron. (ST) 13, 598–609 (2007).
[CrossRef]

2006 (1)

2000 (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Quantum Electron. (ST) 6, 650–657 (2000).
[CrossRef]

1995 (1)

D. Sumida, T. Fan, and R. Hutcheson, “Spectroscopy and diode-pumped lasing of Yb3+-doped Lu3Al5O12 (Yb:LuAG),” Advanced Solid State Lasers 24, 348–350 (1995).

Albach, D.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the LUCIA laser system,” J. Phys. 244, 032015 (2010).

D. Albach, J.-C. Chanteloup, and G. L. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17, 3792–3801 (2009).
[CrossRef] [PubMed]

Alshourbagy, M.

A. Toncelli, M. Alshourbagy, and M. Tonelli, “Optical properties of Yb3+ doped Lu3Al5O12 crystal fibers grown by μ-pulling down technique,” J. Appl. Phys. 104, 104916 (2008).
[CrossRef]

Arzakantsyan, M.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the LUCIA laser system,” J. Phys. 244, 032015 (2010).

Banerjee, S.

Beil, K.

Boulon, G.

Bourdet, G.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the LUCIA laser system,” J. Phys. 244, 032015 (2010).

Brenier, A.

Canibano, H.

Chanteloup, J.-C.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the LUCIA laser system,” J. Phys. 244, 032015 (2010).

D. Albach, J.-C. Chanteloup, and G. L. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17, 3792–3801 (2009).
[CrossRef] [PubMed]

Collier, J. C.

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Quantum Electron. (ST) 6, 650–657 (2000).
[CrossRef]

Curtis, A.

Curtis, A. H.

Eganyan, A.

Ertel, K.

Fan, T.

D. Sumida, T. Fan, and R. Hutcheson, “Spectroscopy and diode-pumped lasing of Yb3+-doped Lu3Al5O12 (Yb:LuAG),” Advanced Solid State Lasers 24, 348–350 (1995).

Fredrich-Thornton, S.

Furch, F.

Furch, F. J.

Giesen, A.

J. Mende, G. Spindler, J. Speiser, and A. Giesen, “Concept of neutral gain modules for power scaling of thin-disk lasers,” Appl. Phys. B 97, 307–315 (2009).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Quantum Electron. (ST) 13, 598–609 (2007).
[CrossRef]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Quantum Electron. (ST) 6, 650–657 (2000).
[CrossRef]

Guyot, Y.

Hein, J.

Hellwing, M.

Hernandez-Gomez, C.

Hollander, P.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the LUCIA laser system,” J. Phys. 244, 032015 (2010).

Huber, G.

Hügel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Quantum Electron. (ST) 6, 650–657 (2000).
[CrossRef]

Hutcheson, R.

D. Sumida, T. Fan, and R. Hutcheson, “Spectroscopy and diode-pumped lasing of Yb3+-doped Lu3Al5O12 (Yb:LuAG),” Advanced Solid State Lasers 24, 348–350 (1995).

Jaque, D.

Jung, R.

Karsch, S.

Khazanov, E.

I. B. Mukhin, A. Vyatkin, E. Perevezentsev, O. Vadimova, O. Palashov, and E. Khazanov, “Sub-joule level high repetition rate cryogenic disk laser,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CWP6.

Kienberger, R.

Killi, A.

Klingebiel, S.

Koerner, J.

Kränkel, C.

Krausz, F.

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Quantum Electron. (ST) 6, 650–657 (2000).
[CrossRef]

Loeser, M.

Luo, D. W.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9, 30–34 (2012).
[CrossRef]

Luther, B.

Luther, B. M.

Mason, P. D.

Meehan, S. P.

Mende, J.

J. Mende, G. Spindler, J. Speiser, and A. Giesen, “Concept of neutral gain modules for power scaling of thin-disk lasers,” Appl. Phys. B 97, 307–315 (2009).
[CrossRef]

Metzger, T.

Mukhin, I. B.

I. B. Mukhin, A. Vyatkin, E. Perevezentsev, O. Vadimova, O. Palashov, and E. Khazanov, “Sub-joule level high repetition rate cryogenic disk laser,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CWP6.

Nakao, H.

Nickles, P. V.

Palashov, O.

I. B. Mukhin, A. Vyatkin, E. Perevezentsev, O. Vadimova, O. Palashov, and E. Khazanov, “Sub-joule level high repetition rate cryogenic disk laser,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CWP6.

Perevezentsev, E.

I. B. Mukhin, A. Vyatkin, E. Perevezentsev, O. Vadimova, O. Palashov, and E. Khazanov, “Sub-joule level high repetition rate cryogenic disk laser,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CWP6.

Petermann, K.

Peters, R.

Petrosyan, A.

Phillips, P. J.

Qin, X. P.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9, 30–34 (2012).
[CrossRef]

Reagan, B.

Reagan, B. A.

Rocca, J.

Rocca, J. J.

Ródenas, A.

Roeser, F.

M. Loeser, M. Siebold, F. Roeser, and U. Schramm, “High energy CPA-free picosecond Yb:YAG amplifier,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AM4A.16.

Sandner, W.

Schramm, U.

M. Siebold, M. Loeser, U. Schramm, J. Koerner, M. Wolf, M. Hellwing, J. Hein, and K. Ertel, “High-efficiency, room-temperature nanosecond Yb:YAG laser,” Opt. Express 17, 19887–19893 (2009).
[CrossRef] [PubMed]

M. Loeser, M. Siebold, F. Roeser, and U. Schramm, “High energy CPA-free picosecond Yb:YAG amplifier,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AM4A.16.

Schwarz, A.

Shirakawa, A.

Siebold, M.

Speiser, J.

J. Mende, G. Spindler, J. Speiser, and A. Giesen, “Concept of neutral gain modules for power scaling of thin-disk lasers,” Appl. Phys. B 97, 307–315 (2009).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Quantum Electron. (ST) 13, 598–609 (2007).
[CrossRef]

Spindler, G.

J. Mende, G. Spindler, J. Speiser, and A. Giesen, “Concept of neutral gain modules for power scaling of thin-disk lasers,” Appl. Phys. B 97, 307–315 (2009).
[CrossRef]

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Quantum Electron. (ST) 6, 650–657 (2000).
[CrossRef]

Stiel, H.

Sumida, D.

D. Sumida, T. Fan, and R. Hutcheson, “Spectroscopy and diode-pumped lasing of Yb3+-doped Lu3Al5O12 (Yb:LuAG),” Advanced Solid State Lasers 24, 348–350 (1995).

Sutter, D.

Tan, W. D.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9, 30–34 (2012).
[CrossRef]

Tang, D. Y.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9, 30–34 (2012).
[CrossRef]

Teisset, C.

Tellkamp, F.

Toncelli, A.

A. Toncelli, M. Alshourbagy, and M. Tonelli, “Optical properties of Yb3+ doped Lu3Al5O12 crystal fibers grown by μ-pulling down technique,” J. Appl. Phys. 104, 104916 (2008).
[CrossRef]

Tonelli, M.

A. Toncelli, M. Alshourbagy, and M. Tonelli, “Optical properties of Yb3+ doped Lu3Al5O12 crystal fibers grown by μ-pulling down technique,” J. Appl. Phys. 104, 104916 (2008).
[CrossRef]

Touzé, G. L.

Tümmler, J.

Ueda, K.-I.

Vadimova, O.

I. B. Mukhin, A. Vyatkin, E. Perevezentsev, O. Vadimova, O. Palashov, and E. Khazanov, “Sub-joule level high repetition rate cryogenic disk laser,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CWP6.

Vincent, B.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the LUCIA laser system,” J. Phys. 244, 032015 (2010).

Vyatkin, A.

I. B. Mukhin, A. Vyatkin, E. Perevezentsev, O. Vadimova, O. Palashov, and E. Khazanov, “Sub-joule level high repetition rate cryogenic disk laser,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CWP6.

Wandt, C.

Wernsing, K.

Wolf, M.

Xu, C. W.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9, 30–34 (2012).
[CrossRef]

Yagi, H.

Yanagitani, T.

Yang, H.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9, 30–34 (2012).
[CrossRef]

Zhang, J.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9, 30–34 (2012).
[CrossRef]

Advanced Solid State Lasers (1)

D. Sumida, T. Fan, and R. Hutcheson, “Spectroscopy and diode-pumped lasing of Yb3+-doped Lu3Al5O12 (Yb:LuAG),” Advanced Solid State Lasers 24, 348–350 (1995).

Appl. Phys. B (1)

J. Mende, G. Spindler, J. Speiser, and A. Giesen, “Concept of neutral gain modules for power scaling of thin-disk lasers,” Appl. Phys. B 97, 307–315 (2009).
[CrossRef]

IEEE J. Quantum Electron. (ST) (2)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Quantum Electron. (ST) 13, 598–609 (2007).
[CrossRef]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Quantum Electron. (ST) 6, 650–657 (2000).
[CrossRef]

J. Appl. Phys. (1)

A. Toncelli, M. Alshourbagy, and M. Tonelli, “Optical properties of Yb3+ doped Lu3Al5O12 crystal fibers grown by μ-pulling down technique,” J. Appl. Phys. 104, 104916 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the LUCIA laser system,” J. Phys. 244, 032015 (2010).

Laser Phys. Lett. (1)

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9, 30–34 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

Other (2)

M. Loeser, M. Siebold, F. Roeser, and U. Schramm, “High energy CPA-free picosecond Yb:YAG amplifier,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AM4A.16.

I. B. Mukhin, A. Vyatkin, E. Perevezentsev, O. Vadimova, O. Palashov, and E. Khazanov, “Sub-joule level high repetition rate cryogenic disk laser,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CWP6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup. (a) ns-oscillator operating in cavity-dumped mode with subsequent Yb:YAG booster: LD1 9 W fiber-coupled laser diode; La, Lb, spherical lenses (fa = 50 mm, fb = 100 mm); DM, dichroic mirror (AR 0° 930–950 nm, HR 0° 1010–1070 nm); Ma, Mb, dielectric flat mirror (HR 0° 1010–1060 nm); Mc, dielectric concave mirror (HR 0° 1010–1060 nm), radius of curvature: 500 mm; TFP thin film polarizer (angle of incidence: 55°); FI1, FI2, Faraday isolator (rotator and polarizers); HWP/ QWP, half/ quarter wave-plate; PC, KD*P Pockels-cell; T1, T2, spherical lens telescopes; (b) Multipass amplifier (top view): LD2, 4 kW Laser diode stack M, M1, dielectric flat turning mirrors (HR 45° 1010–1060 nm), diameter: 25 mm; M2, M3, dielectric concave mirrors (HR 0° 1010–1060 nm), radius of curvature: 750 mm, diameter: 50 mm; M4, dielectric flat mirror (HR 0° 1010–1060 nm), diameter: 25 mm; L1, toric lens (fast axis: fFA = 800 mm; slow axis: fSA = 115 mm); L2, spherical lens (f = 500 mm); L3, spherical lenses (f = 100 mm); L4, L5, spherical lenses (f = 75 mm); PM1, PM2 broadband dielectric flat mirror (HR 0° 750–1100 nm); MLA, (AR 750–1100 nm coated) micro-lens array (f = 10 mm, size: 15 × 15 mm2, pitch: 500 μm); (c) side-view of the multi-pass amplifier.

Fig. 2
Fig. 2

Beam profiles of the final amplifier: (a) pump profile, (b) seed beam profile, (c) transmitted output beam without gain, (d) amplified output beam.

Fig. 3
Fig. 3

Optical quality: (a) interferograms and (b) polarimetric images of the ceramic Yb:LuAG and the crystalline Yb:YAG disks.

Fig. 4
Fig. 4

Dynamic of the cavity-dumped ns-oscillator: (a) Output pulse energy and build-up time vs. pump peak power, pulsed pumping with pump duration of 1 ms and a repetition rate of 10 Hz; (b) Output pulse energy and average output power vs. repetition rate, continuous-wave pumping, pump power: 6.7 W.

Fig. 5
Fig. 5

Single-pass gain of diode-pumped Yb:LuAG and Yb:YAG at a pump pulse duration of 1 ms: (a) single-pass gain calculated from the total gain of a ten-pass amplifier, seed energy: 1 mJ at a wavelength of 1030 nm, (b) tuning range of the small-signal single-pass gain.

Fig. 6
Fig. 6

Dynamic of the Yb:LuAG Multi-pass amplifier: (a) Output pulse energy and (b) optical-to-optical conversion efficiency vs. pump peak power: tp, pump duration; Tc, cooling water temperature; νrep, repetition rate; PR, pump recovery (i.e. 4 pump passes).

Fig. 7
Fig. 7

Comparison of the multi-pass amplifier output between Yb:LuAG and Yb:YAG with different doping and thickness: (a) Output pulse energy and (b) optical-to-optical conversion efficiency vs. pump peak power.

Fig. 8
Fig. 8

Wavefront analysis of the amplified output pulses: (a) Strehl ratio and focal power (divergent beam) vs. pump energy at a repetition rate of 10 Hz, (b) wavefront at 0.6 J, and (c) wavefront at 2 J pump energy, (wavelength λ = 1030 nm).

Metrics