Abstract

Abstract: We report initially the design, fabrication and measurement of using waveguided electric metamaterials (MTM) in the design of closely-spaced microtrip antenna arrays with mutual coupling reduction. The complementary spiral ring resonators (CSRs) which exhibit single negative resonant permittivity around 3.5GHz are used as the basic electric MTM element. For verification, two CSRs with two and three concentric rings are considered, respectively. By properly arranging these well engineered waveguided MTMs between two H-plane coupled patch antennas, both numerical and measured results indicate that more than 8.4dB mutual coupling reduction is obtained. The mechanism has been studied from a physical insight. The electric MTM element is electrically small, enabling the resultant antenna array to exhibit a small separation (λo/8 at the operating wavelength) and thus a high directivity. The proposed strategy opens an avenue to new types of antenna with super performances and can be generalized for other electric resonators.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [CrossRef]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  6. J. Zhao, Y. Feng, B. Zhu, and T. Jiang, “Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms,” Opt. Express 16(22), 18057–18066 (2008).
    [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  8. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [CrossRef] [PubMed]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  10. Y. Q. Pang, H. F. Cheng, Y. J. Zhou, Z. G. Li, and J. Wang, “Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates,” Opt. Express 20(11), 12515–12520 (2012).
    [CrossRef] [PubMed]
  11. N. Engheta and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
  12. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, 2006).
  13. H. X. Xu, G. M. Wang, and J. Q. Gong, “Compact dual-band zeroth-order resonance antenna,” Chin. Phys. Lett. 29(1), 014101 (2012).
    [CrossRef]
  14. R. Marques, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications (Wiley, 2008).
  15. H. X. Xu, G. M. Wang, and J. G. Liang, “Novel composite right-/left-handed transmission lines using fractal geometry and compact microwave devices application,” Radio Sci. 46(5), RS5008 (2011).
    [CrossRef]
  16. L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett. 96(16), 164101 (2010).
    [CrossRef]
  17. M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, “Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications,” IEEE Trans. Antenn. Propag. 58(9), 2894–2902 (2010).
    [CrossRef]
  18. X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
    [CrossRef]
  19. F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications,” IEEE Trans. Antenn. Propag. 51(10), 2936–2946 (2003).
    [CrossRef]
  20. M. Coulombe, K. S. Farzaneh, and C. Caloz, “Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances,” IEEE Trans. Antenn. Propag. 58(4), 1076–1086 (2010).
    [CrossRef]
  21. C.-Y. Chiu, C.-H. Cheng, R. D. Murch, and C. R. Rowell, “Reduction of mutual coupling between closely-packed antenna elements,” IEEE Trans. Antenn. Propag. 55(6), 1732–1738 (2007).
    [CrossRef]
  22. M. M. Bait-Suwailam, O. F. Siddiqui, and O. M. Ramahi, “Mutual coupling reduction between microstrip patch antennas using elotted-complementary split-ring resonators,” IEEE Antennas Wireless Propag. 9, 876–878 (2010).
    [CrossRef]
  23. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
    [CrossRef] [PubMed]
  24. H. X. Xu, G. M. Wang, and J. G. Liang, “Novel designed CSRRs and its application in tunable tri-band bandpass filter based on fractal geometry,” Radioengineering 20, 312–316 (2011).
  25. J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
    [CrossRef]
  26. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
    [CrossRef] [PubMed]

2012 (3)

H. X. Xu, G. M. Wang, and J. Q. Gong, “Compact dual-band zeroth-order resonance antenna,” Chin. Phys. Lett. 29(1), 014101 (2012).
[CrossRef]

X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
[CrossRef]

Y. Q. Pang, H. F. Cheng, Y. J. Zhou, Z. G. Li, and J. Wang, “Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates,” Opt. Express 20(11), 12515–12520 (2012).
[CrossRef] [PubMed]

2011 (2)

H. X. Xu, G. M. Wang, and J. G. Liang, “Novel designed CSRRs and its application in tunable tri-band bandpass filter based on fractal geometry,” Radioengineering 20, 312–316 (2011).

H. X. Xu, G. M. Wang, and J. G. Liang, “Novel composite right-/left-handed transmission lines using fractal geometry and compact microwave devices application,” Radio Sci. 46(5), RS5008 (2011).
[CrossRef]

2010 (4)

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett. 96(16), 164101 (2010).
[CrossRef]

M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, “Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications,” IEEE Trans. Antenn. Propag. 58(9), 2894–2902 (2010).
[CrossRef]

M. Coulombe, K. S. Farzaneh, and C. Caloz, “Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances,” IEEE Trans. Antenn. Propag. 58(4), 1076–1086 (2010).
[CrossRef]

M. M. Bait-Suwailam, O. F. Siddiqui, and O. M. Ramahi, “Mutual coupling reduction between microstrip patch antennas using elotted-complementary split-ring resonators,” IEEE Antennas Wireless Propag. 9, 876–878 (2010).
[CrossRef]

2009 (1)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

2008 (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[CrossRef] [PubMed]

J. Zhao, Y. Feng, B. Zhu, and T. Jiang, “Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms,” Opt. Express 16(22), 18057–18066 (2008).
[CrossRef] [PubMed]

2007 (1)

C.-Y. Chiu, C.-H. Cheng, R. D. Murch, and C. R. Rowell, “Reduction of mutual coupling between closely-packed antenna elements,” IEEE Trans. Antenn. Propag. 55(6), 1732–1738 (2007).
[CrossRef]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005 (1)

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[CrossRef] [PubMed]

2003 (1)

F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications,” IEEE Trans. Antenn. Propag. 51(10), 2936–2946 (2003).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Baena, J. D.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Bait-Suwailam, M. M.

M. M. Bait-Suwailam, O. F. Siddiqui, and O. M. Ramahi, “Mutual coupling reduction between microstrip patch antennas using elotted-complementary split-ring resonators,” IEEE Antennas Wireless Propag. 9, 876–878 (2010).
[CrossRef]

M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, “Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications,” IEEE Trans. Antenn. Propag. 58(9), 2894–2902 (2010).
[CrossRef]

Bonache, J.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Boybay, M. S.

M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, “Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications,” IEEE Trans. Antenn. Propag. 58(9), 2894–2902 (2010).
[CrossRef]

Caloz, C.

M. Coulombe, K. S. Farzaneh, and C. Caloz, “Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances,” IEEE Trans. Antenn. Propag. 58(4), 1076–1086 (2010).
[CrossRef]

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[CrossRef] [PubMed]

Cheng, C.-H.

C.-Y. Chiu, C.-H. Cheng, R. D. Murch, and C. R. Rowell, “Reduction of mutual coupling between closely-packed antenna elements,” IEEE Trans. Antenn. Propag. 55(6), 1732–1738 (2007).
[CrossRef]

Cheng, H. F.

Cheng, Q.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[CrossRef] [PubMed]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Chiu, C.-Y.

C.-Y. Chiu, C.-H. Cheng, R. D. Murch, and C. R. Rowell, “Reduction of mutual coupling between closely-packed antenna elements,” IEEE Trans. Antenn. Propag. 55(6), 1732–1738 (2007).
[CrossRef]

Coulombe, M.

M. Coulombe, K. S. Farzaneh, and C. Caloz, “Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances,” IEEE Trans. Antenn. Propag. 58(4), 1076–1086 (2010).
[CrossRef]

Cui, T. J.

X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[CrossRef] [PubMed]

Cummer, S. A.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Falcone, F.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Farzaneh, K. S.

M. Coulombe, K. S. Farzaneh, and C. Caloz, “Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances,” IEEE Trans. Antenn. Propag. 58(4), 1076–1086 (2010).
[CrossRef]

Feng, Y.

Garcia-Garcia, J.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Gil, I.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Gong, J. Q.

H. X. Xu, G. M. Wang, and J. Q. Gong, “Compact dual-band zeroth-order resonance antenna,” Chin. Phys. Lett. 29(1), 014101 (2012).
[CrossRef]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[CrossRef] [PubMed]

Hand, T.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Jiang, T.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[CrossRef] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Laso, M. A. G.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Li, L. W.

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett. 96(16), 164101 (2010).
[CrossRef]

Li, Y. N.

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett. 96(16), 164101 (2010).
[CrossRef]

Li, Z. G.

Liang, J. G.

H. X. Xu, G. M. Wang, and J. G. Liang, “Novel designed CSRRs and its application in tunable tri-band bandpass filter based on fractal geometry,” Radioengineering 20, 312–316 (2011).

H. X. Xu, G. M. Wang, and J. G. Liang, “Novel composite right-/left-handed transmission lines using fractal geometry and compact microwave devices application,” Radio Sci. 46(5), RS5008 (2011).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[CrossRef] [PubMed]

Liu, X. G.

X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
[CrossRef]

Lopetegi, T.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Martin, F.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Martin, O. J. F.

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett. 96(16), 164101 (2010).
[CrossRef]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Mosig, J. R.

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett. 96(16), 164101 (2010).
[CrossRef]

Murch, R. D.

C.-Y. Chiu, C.-H. Cheng, R. D. Murch, and C. R. Rowell, “Reduction of mutual coupling between closely-packed antenna elements,” IEEE Trans. Antenn. Propag. 55(6), 1732–1738 (2007).
[CrossRef]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[CrossRef] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Pang, Y. Q.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Portillo, M. F.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Rahmat-Samii, Y.

F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications,” IEEE Trans. Antenn. Propag. 51(10), 2936–2946 (2003).
[CrossRef]

Ramahi, O. M.

M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, “Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications,” IEEE Trans. Antenn. Propag. 58(9), 2894–2902 (2010).
[CrossRef]

M. M. Bait-Suwailam, O. F. Siddiqui, and O. M. Ramahi, “Mutual coupling reduction between microstrip patch antennas using elotted-complementary split-ring resonators,” IEEE Antennas Wireless Propag. 9, 876–878 (2010).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Rowell, C. R.

C.-Y. Chiu, C.-H. Cheng, R. D. Murch, and C. R. Rowell, “Reduction of mutual coupling between closely-packed antenna elements,” IEEE Trans. Antenn. Propag. 55(6), 1732–1738 (2007).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Siddiqui, O. F.

M. M. Bait-Suwailam, O. F. Siddiqui, and O. M. Ramahi, “Mutual coupling reduction between microstrip patch antennas using elotted-complementary split-ring resonators,” IEEE Antennas Wireless Propag. 9, 876–878 (2010).
[CrossRef]

Sillero, R. M.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sorolla, M.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Wang, G. M.

H. X. Xu, G. M. Wang, and J. Q. Gong, “Compact dual-band zeroth-order resonance antenna,” Chin. Phys. Lett. 29(1), 014101 (2012).
[CrossRef]

H. X. Xu, G. M. Wang, and J. G. Liang, “Novel designed CSRRs and its application in tunable tri-band bandpass filter based on fractal geometry,” Radioengineering 20, 312–316 (2011).

H. X. Xu, G. M. Wang, and J. G. Liang, “Novel composite right-/left-handed transmission lines using fractal geometry and compact microwave devices application,” Radio Sci. 46(5), RS5008 (2011).
[CrossRef]

Wang, J.

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[CrossRef] [PubMed]

Xu, H. X.

H. X. Xu, G. M. Wang, and J. Q. Gong, “Compact dual-band zeroth-order resonance antenna,” Chin. Phys. Lett. 29(1), 014101 (2012).
[CrossRef]

H. X. Xu, G. M. Wang, and J. G. Liang, “Novel designed CSRRs and its application in tunable tri-band bandpass filter based on fractal geometry,” Radioengineering 20, 312–316 (2011).

H. X. Xu, G. M. Wang, and J. G. Liang, “Novel composite right-/left-handed transmission lines using fractal geometry and compact microwave devices application,” Radio Sci. 46(5), RS5008 (2011).
[CrossRef]

Yang, F.

F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications,” IEEE Trans. Antenn. Propag. 51(10), 2936–2946 (2003).
[CrossRef]

Yang, X. M.

X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
[CrossRef]

Yeo, T. S.

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett. 96(16), 164101 (2010).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Zhao, J.

Zhou, X. Y.

X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
[CrossRef]

Zhou, Y. J.

Zhu, B.

Appl. Phys. Lett. (1)

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett. 96(16), 164101 (2010).
[CrossRef]

Chin. Phys. Lett. (1)

H. X. Xu, G. M. Wang, and J. Q. Gong, “Compact dual-band zeroth-order resonance antenna,” Chin. Phys. Lett. 29(1), 014101 (2012).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett. (1)

X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
[CrossRef]

IEEE Antennas Wireless Propag. (1)

M. M. Bait-Suwailam, O. F. Siddiqui, and O. M. Ramahi, “Mutual coupling reduction between microstrip patch antennas using elotted-complementary split-ring resonators,” IEEE Antennas Wireless Propag. 9, 876–878 (2010).
[CrossRef]

IEEE Trans. Antenn. Propag. (4)

M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, “Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications,” IEEE Trans. Antenn. Propag. 58(9), 2894–2902 (2010).
[CrossRef]

F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications,” IEEE Trans. Antenn. Propag. 51(10), 2936–2946 (2003).
[CrossRef]

M. Coulombe, K. S. Farzaneh, and C. Caloz, “Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances,” IEEE Trans. Antenn. Propag. 58(4), 1076–1086 (2010).
[CrossRef]

C.-Y. Chiu, C.-H. Cheng, R. D. Murch, and C. R. Rowell, “Reduction of mutual coupling between closely-packed antenna elements,” IEEE Trans. Antenn. Propag. 55(6), 1732–1738 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Opt. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Radio Sci. (1)

H. X. Xu, G. M. Wang, and J. G. Liang, “Novel composite right-/left-handed transmission lines using fractal geometry and compact microwave devices application,” Radio Sci. 46(5), RS5008 (2011).
[CrossRef]

Radioengineering (1)

H. X. Xu, G. M. Wang, and J. G. Liang, “Novel designed CSRRs and its application in tunable tri-band bandpass filter based on fractal geometry,” Radioengineering 20, 312–316 (2011).

Science (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Other (3)

R. Marques, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications (Wiley, 2008).

N. Engheta and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the proposed SNG electric WG-MTM element. (a) Top-and-bottom view as well as the illustration of geometrical dimensions; (b) perspective view as well as the simulation setup. The final geometrical parameters (in millimeter: mm) of the CSR1 are a = 4, p = 5, d1 = 0.2, d2 = 0.4 and g1 = 0.4, whereas they are a = 3.2, p = 3.6, d1 = d2 = 0.2 and g1 = 0.4 for CSR2.

Fig. 2
Fig. 2

Simulated S-parameters and the retrieved constitutive EM parameters against frequency. (a) The dependence of S-parameters on a, d2, number of cells in propagation direction, and gap orientation for CSR1; (b) the dependence of S-parameters on the periodicity for CSR1; (c) the dependence of S-parameters on the number of cells and gap orientation for CSR2 and (d) the constitutive EM parameters for CSR1 whose dimensions are given in the caption of Fig. 1.

Fig. 3
Fig. 3

Schematics of the proposed antenna arrays using the electric WG-MTMs. Perspective view of the (a) CSR1 and (b) CSR2-loaded antenna; (b) top and bottom view of the (c) CSR1 and (d) CSR2-loaded antenna. The geometrical parameters (in mm) of the patches and feedline are L = 25.4, lm = 10, d3 = 0.8 and d4 = 4.11. The separation is ls = 10.6 in the former case and is ls = 11.4 in the residual case.

Fig. 4
Fig. 4

Photograph of the fabricated prototypes. (a) Top view; (b) bottom view.

Fig. 5
Fig. 5

Comparisons of the reflection coefficients (S11) and mutual coupling coefficients (S21) of the antenna arrays with and without WG-MTMs between simulation and measurement. (a) Reference antenna; (b) CSR1-loaded WG-MTM antenna; (c) CSR2-loaded WG-MTM antenna; (d) measurement setup in CSR1 case.

Fig. 6
Fig. 6

Comparisons of measured radiation patterns between conventional and proposed MTM antennas without and with SNG electric WG-MTMs at two principle planes. (a) CSR1-based MTM antenna; (b) CSR2-based MTM antenna.

Fig. 7
Fig. 7

The surface current distributions on the top metallic plate of the antenna arrays. (a) Conventional patch antenna array; proposed antenna arrays using (b) CSR1- and (c) CSR2-loaded WG-MTMs.

Metrics