Abstract

Lens-less surface second harmonic generation imaging (SSHGI) is used to image an SHG active molecule, (S)-( + )-1,1’-bi-2-naphthol (SBN), incorporated into a lipid bilayer patterned with the 1951 United States Air Force resolution test target. Data show the coherent plane-wave nature of SHG allows direct imaging without the aid of a lens system. Lens-less SSHGI readily resolves line-widths as small as 223 μm at an object-image distance of 7.6 cm and line-widths of 397 μm at distances as far as 30 cm. Lens-less SSHGI simplifies the detection method, raises photon collection efficiency, and expands the field-of-view. These advantages allow greater throughput and make lens-less SSHGI a potentially valuable detection method for biosensors and medical diagnostics.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [CrossRef]
  2. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
    [CrossRef]
  3. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
    [CrossRef]
  4. T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation,” Phys. Rev. Lett. 54(1), 63–66 (1985).
    [CrossRef] [PubMed]
  5. D. Heskett, K. J. Song, A. Burns, E. W. Plummer, and H. L. Dai, “Coverage dependent phase transition of pyridine on silver(110) observed by second harmonic generation,” J. Chem. Phys. 85(12), 7490–7492 (1986).
    [CrossRef]
  6. R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106(1–2), 30–35 (1984).
    [CrossRef]
  7. J. S. Salafsky, “Second-harmonic generation as a probe of conformational change in molecules,” Chem. Phys. Lett. 381(5-6), 705–709 (2003).
    [CrossRef]
  8. J. M. Hicks and T. Petralli-Mallow, “Nonlinear optics of chiral surface systems,” Appl. Phys. B 68(3), 589–593 (1999).
    [CrossRef]
  9. J. S. Salafsky and K. B. Eisenthal, “Protein adsorption at interfaces detected by second harmonic generation,” J. Phys. Chem. B 104(32), 7752–7755 (2000).
    [CrossRef]
  10. R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
    [CrossRef]
  11. Y. R. Shen, “Surface second harmonic generation: a new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).
    [CrossRef]
  12. A. Motreff, G. Raffy, A. Del Guerzo, C. Belin, M. Dussauze, V. Rodriguez, and J.-M. Vincent, “Chemisorption of fluorous copper(II)-carboxylate complexes on SiO2 surfaces: versatile binding layers applied to the preparation of porphyrin monolayers,” Chem. Commun. (Camb.) 46(15), 2617–2619 (2010).
    [CrossRef] [PubMed]
  13. M. Iwamoto and T. Manaka, “Probing and modeling of carrier motion in organic devices by optical second harmonic generation,” Thin Solid Films 519(3), 961–963 (2010).
    [CrossRef]
  14. M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
    [CrossRef] [PubMed]
  15. P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
    [CrossRef] [PubMed]
  16. C.-S. Liao, Z.-Y. Zhuo, J.-Y. Yu, Y.-Y. Tzeng, S.-W. Chu, S.-F. Yu, and P.-H. G. Chao, “Decrimping: The first stage of collagen thermal denaturation unraveled by in situ second-harmonic-generation imaging,” Appl. Phys. Lett. 98(15), 153703 (2011).
  17. O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65(2), 672–679 (1993).
    [CrossRef] [PubMed]
  18. I. Ben-Oren, G. Peleg, A. Lewis, B. Minke, and L. Loew, “Infrared nonlinear optical measurements of membrane potential in photoreceptor cells,” Biophys. J. 71(3), 1616–1620 (1996).
    [CrossRef] [PubMed]
  19. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, “Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy,” Opt. Lett. 25(5), 320–322 (2000).
    [CrossRef] [PubMed]
  20. A. Srivastava and K. B. Eisenthal, “Kinetics of molecular transport across a liposome bilayer,” Chem. Phys. Lett. 292(3), 345–351 (1998).
    [CrossRef]
  21. E. C. Y. Yan and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79(2), 898–903 (2000).
    [CrossRef] [PubMed]
  22. G. Peleg, A. Lewis, M. Linial, and L. M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6700–6704 (1999).
    [CrossRef] [PubMed]
  23. T. T. Nguyen and J. C. Conboy, “High-throughput screening of drug-lipid membrane interactions via counter-propagating second harmonic generation imaging,” Anal. Chem. 83(15), 5979–5988 (2011).
    [CrossRef] [PubMed]
  24. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  25. A. Schwarz, A. Weiss, D. Fixler, Z. Zalevsky, V. Mico, and J. Garcia, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282(14), 2780–2786 (2009).
    [CrossRef]
  26. P. F. Goldsmith, Quasioptical systems: Gaussian Beam Quasioptical Propagation and Applications. (IEEE Press, 1998).
  27. A. E. Siegman, An Introduction to Lasers and Masers. (McGraw Hill, 1971).
  28. B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ (2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38(2), 107–116 (1985).
    [CrossRef]
  29. R. G. W. A. M. Steinberg, “Coherence” in Access Science (McGraw Hill, 2008).
  30. G. Tyras, Radiation and Propagationof Electromagnetic Waves. (Academic Press, 1969).
  31. Y. R. Shen, The Principles of Nonlinear Optics. (John Wiley & Sons, Inc., 1984).
  32. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5(10), 1550–1567 (1966).
    [CrossRef] [PubMed]
  33. R. Masina, X. D. Zhu, A. N. Parikh, R. Bruch, and J. P. Landry, “Biophotonic studies on lipid membranes using oblique incidence reflectivity difference (OI-RD) ellipsometry,” Proc. SPIE 6095, 60950T (2006).
  34. G. R. Fowles, Introduction to Modern Optics, Second ed. (Holt, Rinehart and Winston, Inc., 1968).

2011 (3)

P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
[CrossRef] [PubMed]

C.-S. Liao, Z.-Y. Zhuo, J.-Y. Yu, Y.-Y. Tzeng, S.-W. Chu, S.-F. Yu, and P.-H. G. Chao, “Decrimping: The first stage of collagen thermal denaturation unraveled by in situ second-harmonic-generation imaging,” Appl. Phys. Lett. 98(15), 153703 (2011).

T. T. Nguyen and J. C. Conboy, “High-throughput screening of drug-lipid membrane interactions via counter-propagating second harmonic generation imaging,” Anal. Chem. 83(15), 5979–5988 (2011).
[CrossRef] [PubMed]

2010 (2)

A. Motreff, G. Raffy, A. Del Guerzo, C. Belin, M. Dussauze, V. Rodriguez, and J.-M. Vincent, “Chemisorption of fluorous copper(II)-carboxylate complexes on SiO2 surfaces: versatile binding layers applied to the preparation of porphyrin monolayers,” Chem. Commun. (Camb.) 46(15), 2617–2619 (2010).
[CrossRef] [PubMed]

M. Iwamoto and T. Manaka, “Probing and modeling of carrier motion in organic devices by optical second harmonic generation,” Thin Solid Films 519(3), 961–963 (2010).
[CrossRef]

2009 (1)

A. Schwarz, A. Weiss, D. Fixler, Z. Zalevsky, V. Mico, and J. Garcia, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282(14), 2780–2786 (2009).
[CrossRef]

2005 (1)

M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
[CrossRef] [PubMed]

2003 (1)

J. S. Salafsky, “Second-harmonic generation as a probe of conformational change in molecules,” Chem. Phys. Lett. 381(5-6), 705–709 (2003).
[CrossRef]

2000 (3)

J. S. Salafsky and K. B. Eisenthal, “Protein adsorption at interfaces detected by second harmonic generation,” J. Phys. Chem. B 104(32), 7752–7755 (2000).
[CrossRef]

L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, “Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy,” Opt. Lett. 25(5), 320–322 (2000).
[CrossRef] [PubMed]

E. C. Y. Yan and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79(2), 898–903 (2000).
[CrossRef] [PubMed]

1999 (2)

G. Peleg, A. Lewis, M. Linial, and L. M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6700–6704 (1999).
[CrossRef] [PubMed]

J. M. Hicks and T. Petralli-Mallow, “Nonlinear optics of chiral surface systems,” Appl. Phys. B 68(3), 589–593 (1999).
[CrossRef]

1998 (1)

A. Srivastava and K. B. Eisenthal, “Kinetics of molecular transport across a liposome bilayer,” Chem. Phys. Lett. 292(3), 345–351 (1998).
[CrossRef]

1996 (1)

I. Ben-Oren, G. Peleg, A. Lewis, B. Minke, and L. Loew, “Infrared nonlinear optical measurements of membrane potential in photoreceptor cells,” Biophys. J. 71(3), 1616–1620 (1996).
[CrossRef] [PubMed]

1993 (1)

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65(2), 672–679 (1993).
[CrossRef] [PubMed]

1989 (1)

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
[CrossRef]

1986 (2)

D. Heskett, K. J. Song, A. Burns, E. W. Plummer, and H. L. Dai, “Coverage dependent phase transition of pyridine on silver(110) observed by second harmonic generation,” J. Chem. Phys. 85(12), 7490–7492 (1986).
[CrossRef]

Y. R. Shen, “Surface second harmonic generation: a new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).
[CrossRef]

1985 (2)

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation,” Phys. Rev. Lett. 54(1), 63–66 (1985).
[CrossRef] [PubMed]

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ (2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38(2), 107–116 (1985).
[CrossRef]

1984 (1)

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106(1–2), 30–35 (1984).
[CrossRef]

1974 (1)

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
[CrossRef]

1968 (1)

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
[CrossRef]

1966 (1)

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Belin, C.

A. Motreff, G. Raffy, A. Del Guerzo, C. Belin, M. Dussauze, V. Rodriguez, and J.-M. Vincent, “Chemisorption of fluorous copper(II)-carboxylate complexes on SiO2 surfaces: versatile binding layers applied to the preparation of porphyrin monolayers,” Chem. Commun. (Camb.) 46(15), 2617–2619 (2010).
[CrossRef] [PubMed]

Ben-Oren, I.

I. Ben-Oren, G. Peleg, A. Lewis, B. Minke, and L. Loew, “Infrared nonlinear optical measurements of membrane potential in photoreceptor cells,” Biophys. J. 71(3), 1616–1620 (1996).
[CrossRef] [PubMed]

Blanchard-Desce, M.

Bloembergen, N.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
[CrossRef]

Bouevitch, O.

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65(2), 672–679 (1993).
[CrossRef] [PubMed]

Burns, A.

D. Heskett, K. J. Song, A. Burns, E. W. Plummer, and H. L. Dai, “Coverage dependent phase transition of pyridine on silver(110) observed by second harmonic generation,” J. Chem. Phys. 85(12), 7490–7492 (1986).
[CrossRef]

Campagnola, P.

P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
[CrossRef] [PubMed]

Chang, R. K.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
[CrossRef]

Chao, P.-H. G.

C.-S. Liao, Z.-Y. Zhuo, J.-Y. Yu, Y.-Y. Tzeng, S.-W. Chu, S.-F. Yu, and P.-H. G. Chao, “Decrimping: The first stage of collagen thermal denaturation unraveled by in situ second-harmonic-generation imaging,” Appl. Phys. Lett. 98(15), 153703 (2011).

Christensen, P.

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
[CrossRef]

Chu, S.-W.

C.-S. Liao, Z.-Y. Zhuo, J.-Y. Yu, Y.-Y. Tzeng, S.-W. Chu, S.-F. Yu, and P.-H. G. Chao, “Decrimping: The first stage of collagen thermal denaturation unraveled by in situ second-harmonic-generation imaging,” Appl. Phys. Lett. 98(15), 153703 (2011).

Conboy, J. C.

T. T. Nguyen and J. C. Conboy, “High-throughput screening of drug-lipid membrane interactions via counter-propagating second harmonic generation imaging,” Anal. Chem. 83(15), 5979–5988 (2011).
[CrossRef] [PubMed]

M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
[CrossRef] [PubMed]

Corn, R. M.

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106(1–2), 30–35 (1984).
[CrossRef]

Dai, H. L.

D. Heskett, K. J. Song, A. Burns, E. W. Plummer, and H. L. Dai, “Coverage dependent phase transition of pyridine on silver(110) observed by second harmonic generation,” J. Chem. Phys. 85(12), 7490–7492 (1986).
[CrossRef]

Del Guerzo, A.

A. Motreff, G. Raffy, A. Del Guerzo, C. Belin, M. Dussauze, V. Rodriguez, and J.-M. Vincent, “Chemisorption of fluorous copper(II)-carboxylate complexes on SiO2 surfaces: versatile binding layers applied to the preparation of porphyrin monolayers,” Chem. Commun. (Camb.) 46(15), 2617–2619 (2010).
[CrossRef] [PubMed]

Dick, B.

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ (2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38(2), 107–116 (1985).
[CrossRef]

Dussauze, M.

A. Motreff, G. Raffy, A. Del Guerzo, C. Belin, M. Dussauze, V. Rodriguez, and J.-M. Vincent, “Chemisorption of fluorous copper(II)-carboxylate complexes on SiO2 surfaces: versatile binding layers applied to the preparation of porphyrin monolayers,” Chem. Commun. (Camb.) 46(15), 2617–2619 (2010).
[CrossRef] [PubMed]

Eisenthal, K. B.

J. S. Salafsky and K. B. Eisenthal, “Protein adsorption at interfaces detected by second harmonic generation,” J. Phys. Chem. B 104(32), 7752–7755 (2000).
[CrossRef]

E. C. Y. Yan and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79(2), 898–903 (2000).
[CrossRef] [PubMed]

A. Srivastava and K. B. Eisenthal, “Kinetics of molecular transport across a liposome bilayer,” Chem. Phys. Lett. 292(3), 345–351 (1998).
[CrossRef]

Fixler, D.

A. Schwarz, A. Weiss, D. Fixler, Z. Zalevsky, V. Mico, and J. Garcia, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282(14), 2780–2786 (2009).
[CrossRef]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Garcia, J.

A. Schwarz, A. Weiss, D. Fixler, Z. Zalevsky, V. Mico, and J. Garcia, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282(14), 2780–2786 (2009).
[CrossRef]

Gierulski, A.

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ (2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38(2), 107–116 (1985).
[CrossRef]

Heinz, T. F.

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation,” Phys. Rev. Lett. 54(1), 63–66 (1985).
[CrossRef] [PubMed]

Hellwarth, R.

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
[CrossRef]

Heskett, D.

D. Heskett, K. J. Song, A. Burns, E. W. Plummer, and H. L. Dai, “Coverage dependent phase transition of pyridine on silver(110) observed by second harmonic generation,” J. Chem. Phys. 85(12), 7490–7492 (1986).
[CrossRef]

Hicks, J. M.

J. M. Hicks and T. Petralli-Mallow, “Nonlinear optics of chiral surface systems,” Appl. Phys. B 68(3), 589–593 (1999).
[CrossRef]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Iwamoto, M.

M. Iwamoto and T. Manaka, “Probing and modeling of carrier motion in organic devices by optical second harmonic generation,” Thin Solid Films 519(3), 961–963 (2010).
[CrossRef]

Jha, S. S.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
[CrossRef]

Kogelnik, H.

Kriech, M. A.

M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
[CrossRef] [PubMed]

Lee, C. H.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
[CrossRef]

Levenson, M. D.

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106(1–2), 30–35 (1984).
[CrossRef]

Lewis, A.

G. Peleg, A. Lewis, M. Linial, and L. M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6700–6704 (1999).
[CrossRef] [PubMed]

I. Ben-Oren, G. Peleg, A. Lewis, B. Minke, and L. Loew, “Infrared nonlinear optical measurements of membrane potential in photoreceptor cells,” Biophys. J. 71(3), 1616–1620 (1996).
[CrossRef] [PubMed]

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65(2), 672–679 (1993).
[CrossRef] [PubMed]

Li, T.

Liao, C.-S.

C.-S. Liao, Z.-Y. Zhuo, J.-Y. Yu, Y.-Y. Tzeng, S.-W. Chu, S.-F. Yu, and P.-H. G. Chao, “Decrimping: The first stage of collagen thermal denaturation unraveled by in situ second-harmonic-generation imaging,” Appl. Phys. Lett. 98(15), 153703 (2011).

Linial, M.

G. Peleg, A. Lewis, M. Linial, and L. M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6700–6704 (1999).
[CrossRef] [PubMed]

Loew, L.

I. Ben-Oren, G. Peleg, A. Lewis, B. Minke, and L. Loew, “Infrared nonlinear optical measurements of membrane potential in photoreceptor cells,” Biophys. J. 71(3), 1616–1620 (1996).
[CrossRef] [PubMed]

Loew, L. M.

G. Peleg, A. Lewis, M. Linial, and L. M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6700–6704 (1999).
[CrossRef] [PubMed]

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65(2), 672–679 (1993).
[CrossRef] [PubMed]

Loy, M. M. T.

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation,” Phys. Rev. Lett. 54(1), 63–66 (1985).
[CrossRef] [PubMed]

Manaka, T.

M. Iwamoto and T. Manaka, “Probing and modeling of carrier motion in organic devices by optical second harmonic generation,” Thin Solid Films 519(3), 961–963 (2010).
[CrossRef]

Marowsky, G.

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ (2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38(2), 107–116 (1985).
[CrossRef]

Mertz, J.

Mico, V.

A. Schwarz, A. Weiss, D. Fixler, Z. Zalevsky, V. Mico, and J. Garcia, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282(14), 2780–2786 (2009).
[CrossRef]

Minke, B.

I. Ben-Oren, G. Peleg, A. Lewis, B. Minke, and L. Loew, “Infrared nonlinear optical measurements of membrane potential in photoreceptor cells,” Biophys. J. 71(3), 1616–1620 (1996).
[CrossRef] [PubMed]

Moreaux, L.

Motreff, A.

A. Motreff, G. Raffy, A. Del Guerzo, C. Belin, M. Dussauze, V. Rodriguez, and J.-M. Vincent, “Chemisorption of fluorous copper(II)-carboxylate complexes on SiO2 surfaces: versatile binding layers applied to the preparation of porphyrin monolayers,” Chem. Commun. (Camb.) 46(15), 2617–2619 (2010).
[CrossRef] [PubMed]

Nguyen, T. T.

T. T. Nguyen and J. C. Conboy, “High-throughput screening of drug-lipid membrane interactions via counter-propagating second harmonic generation imaging,” Anal. Chem. 83(15), 5979–5988 (2011).
[CrossRef] [PubMed]

Peleg, G.

G. Peleg, A. Lewis, M. Linial, and L. M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6700–6704 (1999).
[CrossRef] [PubMed]

I. Ben-Oren, G. Peleg, A. Lewis, B. Minke, and L. Loew, “Infrared nonlinear optical measurements of membrane potential in photoreceptor cells,” Biophys. J. 71(3), 1616–1620 (1996).
[CrossRef] [PubMed]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Petralli-Mallow, T.

J. M. Hicks and T. Petralli-Mallow, “Nonlinear optics of chiral surface systems,” Appl. Phys. B 68(3), 589–593 (1999).
[CrossRef]

Philpott, M. R.

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106(1–2), 30–35 (1984).
[CrossRef]

Pinevsky, I.

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65(2), 672–679 (1993).
[CrossRef] [PubMed]

Plummer, E. W.

D. Heskett, K. J. Song, A. Burns, E. W. Plummer, and H. L. Dai, “Coverage dependent phase transition of pyridine on silver(110) observed by second harmonic generation,” J. Chem. Phys. 85(12), 7490–7492 (1986).
[CrossRef]

Raffy, G.

A. Motreff, G. Raffy, A. Del Guerzo, C. Belin, M. Dussauze, V. Rodriguez, and J.-M. Vincent, “Chemisorption of fluorous copper(II)-carboxylate complexes on SiO2 surfaces: versatile binding layers applied to the preparation of porphyrin monolayers,” Chem. Commun. (Camb.) 46(15), 2617–2619 (2010).
[CrossRef] [PubMed]

Reider, G. A.

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ (2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38(2), 107–116 (1985).
[CrossRef]

Rodriguez, V.

A. Motreff, G. Raffy, A. Del Guerzo, C. Belin, M. Dussauze, V. Rodriguez, and J.-M. Vincent, “Chemisorption of fluorous copper(II)-carboxylate complexes on SiO2 surfaces: versatile binding layers applied to the preparation of porphyrin monolayers,” Chem. Commun. (Camb.) 46(15), 2617–2619 (2010).
[CrossRef] [PubMed]

Romagnoli, M.

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106(1–2), 30–35 (1984).
[CrossRef]

Salafsky, J. S.

J. S. Salafsky, “Second-harmonic generation as a probe of conformational change in molecules,” Chem. Phys. Lett. 381(5-6), 705–709 (2003).
[CrossRef]

J. S. Salafsky and K. B. Eisenthal, “Protein adsorption at interfaces detected by second harmonic generation,” J. Phys. Chem. B 104(32), 7752–7755 (2000).
[CrossRef]

Sandre, O.

Schwarz, A.

A. Schwarz, A. Weiss, D. Fixler, Z. Zalevsky, V. Mico, and J. Garcia, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282(14), 2780–2786 (2009).
[CrossRef]

Shen, Y. R.

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
[CrossRef]

Y. R. Shen, “Surface second harmonic generation: a new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).
[CrossRef]

Song, K. J.

D. Heskett, K. J. Song, A. Burns, E. W. Plummer, and H. L. Dai, “Coverage dependent phase transition of pyridine on silver(110) observed by second harmonic generation,” J. Chem. Phys. 85(12), 7490–7492 (1986).
[CrossRef]

Srivastava, A.

A. Srivastava and K. B. Eisenthal, “Kinetics of molecular transport across a liposome bilayer,” Chem. Phys. Lett. 292(3), 345–351 (1998).
[CrossRef]

Thompson, W. A.

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation,” Phys. Rev. Lett. 54(1), 63–66 (1985).
[CrossRef] [PubMed]

Tzeng, Y.-Y.

C.-S. Liao, Z.-Y. Zhuo, J.-Y. Yu, Y.-Y. Tzeng, S.-W. Chu, S.-F. Yu, and P.-H. G. Chao, “Decrimping: The first stage of collagen thermal denaturation unraveled by in situ second-harmonic-generation imaging,” Appl. Phys. Lett. 98(15), 153703 (2011).

Vincent, J.-M.

A. Motreff, G. Raffy, A. Del Guerzo, C. Belin, M. Dussauze, V. Rodriguez, and J.-M. Vincent, “Chemisorption of fluorous copper(II)-carboxylate complexes on SiO2 surfaces: versatile binding layers applied to the preparation of porphyrin monolayers,” Chem. Commun. (Camb.) 46(15), 2617–2619 (2010).
[CrossRef] [PubMed]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Weiss, A.

A. Schwarz, A. Weiss, D. Fixler, Z. Zalevsky, V. Mico, and J. Garcia, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282(14), 2780–2786 (2009).
[CrossRef]

Wuskell, J. P.

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65(2), 672–679 (1993).
[CrossRef] [PubMed]

Yan, E. C. Y.

E. C. Y. Yan and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79(2), 898–903 (2000).
[CrossRef] [PubMed]

Yu, J.-Y.

C.-S. Liao, Z.-Y. Zhuo, J.-Y. Yu, Y.-Y. Tzeng, S.-W. Chu, S.-F. Yu, and P.-H. G. Chao, “Decrimping: The first stage of collagen thermal denaturation unraveled by in situ second-harmonic-generation imaging,” Appl. Phys. Lett. 98(15), 153703 (2011).

Yu, S.-F.

C.-S. Liao, Z.-Y. Zhuo, J.-Y. Yu, Y.-Y. Tzeng, S.-W. Chu, S.-F. Yu, and P.-H. G. Chao, “Decrimping: The first stage of collagen thermal denaturation unraveled by in situ second-harmonic-generation imaging,” Appl. Phys. Lett. 98(15), 153703 (2011).

Zalevsky, Z.

A. Schwarz, A. Weiss, D. Fixler, Z. Zalevsky, V. Mico, and J. Garcia, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282(14), 2780–2786 (2009).
[CrossRef]

Zhuo, Z.-Y.

C.-S. Liao, Z.-Y. Zhuo, J.-Y. Yu, Y.-Y. Tzeng, S.-W. Chu, S.-F. Yu, and P.-H. G. Chao, “Decrimping: The first stage of collagen thermal denaturation unraveled by in situ second-harmonic-generation imaging,” Appl. Phys. Lett. 98(15), 153703 (2011).

Anal. Chem. (2)

P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
[CrossRef] [PubMed]

T. T. Nguyen and J. C. Conboy, “High-throughput screening of drug-lipid membrane interactions via counter-propagating second harmonic generation imaging,” Anal. Chem. 83(15), 5979–5988 (2011).
[CrossRef] [PubMed]

Annu. Rev. Mater. Sci. (1)

Y. R. Shen, “Surface second harmonic generation: a new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ (2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38(2), 107–116 (1985).
[CrossRef]

J. M. Hicks and T. Petralli-Mallow, “Nonlinear optics of chiral surface systems,” Appl. Phys. B 68(3), 589–593 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

C.-S. Liao, Z.-Y. Zhuo, J.-Y. Yu, Y.-Y. Tzeng, S.-W. Chu, S.-F. Yu, and P.-H. G. Chao, “Decrimping: The first stage of collagen thermal denaturation unraveled by in situ second-harmonic-generation imaging,” Appl. Phys. Lett. 98(15), 153703 (2011).

Biophys. J. (3)

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65(2), 672–679 (1993).
[CrossRef] [PubMed]

I. Ben-Oren, G. Peleg, A. Lewis, B. Minke, and L. Loew, “Infrared nonlinear optical measurements of membrane potential in photoreceptor cells,” Biophys. J. 71(3), 1616–1620 (1996).
[CrossRef] [PubMed]

E. C. Y. Yan and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79(2), 898–903 (2000).
[CrossRef] [PubMed]

Chem. Commun. (Camb.) (1)

A. Motreff, G. Raffy, A. Del Guerzo, C. Belin, M. Dussauze, V. Rodriguez, and J.-M. Vincent, “Chemisorption of fluorous copper(II)-carboxylate complexes on SiO2 surfaces: versatile binding layers applied to the preparation of porphyrin monolayers,” Chem. Commun. (Camb.) 46(15), 2617–2619 (2010).
[CrossRef] [PubMed]

Chem. Phys. Lett. (3)

A. Srivastava and K. B. Eisenthal, “Kinetics of molecular transport across a liposome bilayer,” Chem. Phys. Lett. 292(3), 345–351 (1998).
[CrossRef]

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106(1–2), 30–35 (1984).
[CrossRef]

J. S. Salafsky, “Second-harmonic generation as a probe of conformational change in molecules,” Chem. Phys. Lett. 381(5-6), 705–709 (2003).
[CrossRef]

J. Am. Chem. Soc. (1)

M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

D. Heskett, K. J. Song, A. Burns, E. W. Plummer, and H. L. Dai, “Coverage dependent phase transition of pyridine on silver(110) observed by second harmonic generation,” J. Chem. Phys. 85(12), 7490–7492 (1986).
[CrossRef]

J. Phys. Chem. B (1)

J. S. Salafsky and K. B. Eisenthal, “Protein adsorption at interfaces detected by second harmonic generation,” J. Phys. Chem. B 104(32), 7752–7755 (2000).
[CrossRef]

Nature (2)

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
[CrossRef]

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Opt. Commun. (2)

A. Schwarz, A. Weiss, D. Fixler, Z. Zalevsky, V. Mico, and J. Garcia, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282(14), 2780–2786 (2009).
[CrossRef]

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968).
[CrossRef]

Phys. Rev. Lett. (2)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation,” Phys. Rev. Lett. 54(1), 63–66 (1985).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Peleg, A. Lewis, M. Linial, and L. M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6700–6704 (1999).
[CrossRef] [PubMed]

Thin Solid Films (1)

M. Iwamoto and T. Manaka, “Probing and modeling of carrier motion in organic devices by optical second harmonic generation,” Thin Solid Films 519(3), 961–963 (2010).
[CrossRef]

Other (7)

P. F. Goldsmith, Quasioptical systems: Gaussian Beam Quasioptical Propagation and Applications. (IEEE Press, 1998).

A. E. Siegman, An Introduction to Lasers and Masers. (McGraw Hill, 1971).

R. G. W. A. M. Steinberg, “Coherence” in Access Science (McGraw Hill, 2008).

G. Tyras, Radiation and Propagationof Electromagnetic Waves. (Academic Press, 1969).

Y. R. Shen, The Principles of Nonlinear Optics. (John Wiley & Sons, Inc., 1984).

R. Masina, X. D. Zhu, A. N. Parikh, R. Bruch, and J. P. Landry, “Biophotonic studies on lipid membranes using oblique incidence reflectivity difference (OI-RD) ellipsometry,” Proc. SPIE 6095, 60950T (2006).

G. R. Fowles, Introduction to Modern Optics, Second ed. (Holt, Rinehart and Winston, Inc., 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics