Abstract

A high sensitivity Fabry-Pérot (FP) strain sensor based on hollow-core ring photonic crystal fiber was investigated. A low-finesse FP cavity was fabricated by splicing a section of hollow-core ring photonic crystal fiber between two standard single mode fibers. The geometry presents a low cross section area of silica enabling to achieve high strain sensitivity. Strain measurements were performed by considering the FP cavity length in a range of 1000 μm. The total length of the strain gauge at which strain was applied was also studied for a range of 900 mm. The FP cavity length variation highly influenced the strain sensitivity, and for a length of 13 μm a sensitivity of 15.4 pm/με was attained. Relatively to the strain gauge length, its dependence to strain sensitivity is low. Finally, the FP cavity presented residual temperature sensitivity (~0.81 pm/°C).

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight
Opt. Express 17(21) 18669-18675 (2009)

Fabry-Perot cavity based on silica tube for strain sensing at high temperatures

Marta S. Ferreira, Paulo Roriz, Jörg Bierlich, Jens Kobelke, Katrin Wondraczek, Claudia Aichele, Kay Schuster, José L. Santos, and Orlando Frazão
Opt. Express 23(12) 16063-16070 (2015)

Highly sensitive fiber loop ringdown strain sensor using photonic crystal fiber interferometer

Wenjun Zhou, Wei Chang Wong, Chi Chiu Chan, Li-Yang Shao, and Xinyong Dong
Appl. Opt. 50(19) 3087-3092 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. Chen and H. F. Taylor, “Multiplexed fiber Fabry-Perot temperature sensor system using white-light interferometry,” Opt. Lett. 27(11), 903–905 (2002).
    [Crossref] [PubMed]
  2. M. Linec and D. Donlagić, “Quasi-distributed long-gauge fiber optic sensor system,” Opt. Express 17(14), 11515–11529 (2009).
    [Crossref] [PubMed]
  3. O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
    [Crossref]
  4. R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
    [Crossref]
  5. G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
    [Crossref]
  6. Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry-Perot interferometric sensors,” Smart Mater. Struct. 17(5), 055013 (2008).
    [Crossref]
  7. T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [Crossref] [PubMed]
  8. K. Zhou, Z. Yan, L. Zhang, and I. Bennion, “Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel,” Opt. Express 19(12), 11769–11779 (2011).
    [Crossref] [PubMed]
  9. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
    [Crossref] [PubMed]
  10. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [Crossref] [PubMed]
  11. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
    [Crossref] [PubMed]
  12. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
    [Crossref] [PubMed]
  13. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
    [Crossref] [PubMed]
  14. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  15. D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
    [Crossref]
  16. O. Frazão, S. F. O. Silva, A. Guerreiro, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Strain sensitivity control of fiber Bragg grating structures with fused tapers,” Appl. Opt. 46(36), 8578–8582 (2007).
    [Crossref] [PubMed]
  17. O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low loss splice in a microstructured fibre using a conventional fusion splicer,” Microw. Opt. Technol. Lett. 46(2), 172–174 (2005).
    [Crossref]
  18. D. H. Wang, S. J. Wang, and P. G. Jia, “In-line silica capillary tube all-silica fiber-optic Fabry-Perot interferometric sensor for detecting high intensity focused ultrasound fields,” Opt. Lett. 37(11), 2046–2048 (2012).
    [Crossref] [PubMed]
  19. Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys. 148, 33–38 (2008).
  20. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
    [Crossref] [PubMed]
  21. M. S. Ferreira, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Spatial optical filter sensor based on hollow-core silica tube,” Opt. Lett. 37(5), 890–892 (2012).
    [Crossref] [PubMed]

2012 (4)

2011 (1)

2009 (4)

2008 (5)

2007 (3)

2005 (1)

O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low loss splice in a microstructured fibre using a conventional fusion splicer,” Microw. Opt. Technol. Lett. 46(2), 172–174 (2005).
[Crossref]

2004 (1)

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[Crossref]

2002 (1)

1992 (1)

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[Crossref]

Adnet, A.

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[Crossref]

Amezcua-Correa, R.

Araujo, L.

Araújo, F. M.

Aref, S. H.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[Crossref]

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
[Crossref] [PubMed]

Baptista, J. M.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[Crossref]

Bennion, I.

Bouwmans, G.

Caldas, P.

Carvalho, J. P.

Chen, Y.

Chiang, K. S.

Choi, E. S.

Choi, H. Y.

Claus, R. O.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[Crossref]

Coviello, G.

Deng, H. Y.

Deng, M.

Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys. 148, 33–38 (2008).

Donlagic, D.

Duan, D. W.

Duan, D.-W.

D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
[Crossref]

Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys. 148, 33–38 (2008).

Farahi, F.

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
[Crossref] [PubMed]

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[Crossref]

Favero, F. C.

Ferreira, L. A.

Ferreira, M. S.

Finazzi, V.

Frazão, O.

Grover, C. P.

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[Crossref]

Guerreiro, A.

Gunther, M. F.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[Crossref]

Han, Y.

Jia, P. G.

Jiang, Y.

Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry-Perot interferometric sensors,” Smart Mater. Struct. 17(5), 055013 (2008).
[Crossref]

Knight, J. C.

Kobelke, J.

M. S. Ferreira, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Spatial optical filter sensor based on hollow-core silica tube,” Opt. Lett. 37(5), 890–892 (2012).
[Crossref] [PubMed]

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[Crossref]

Latifi, H.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[Crossref]

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
[Crossref] [PubMed]

Lee, B. H.

Liao, X.

Linec, M.

Liu, W. J.

Lu, Z.

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[Crossref]

Murphy, K. A.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[Crossref]

Paek, U. C.

Park, K. S.

Park, S. J.

Pruneri, V.

Ran, Z. L.

Rao, Y. J.

Rao, Y.-J.

D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
[Crossref]

Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys. 148, 33–38 (2008).

Salgado, H. M.

O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low loss splice in a microstructured fibre using a conventional fusion splicer,” Microw. Opt. Technol. Lett. 46(2), 172–174 (2005).
[Crossref]

Santos, J. L.

Schuster, K.

M. S. Ferreira, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Spatial optical filter sensor based on hollow-core silica tube,” Opt. Lett. 37(5), 890–892 (2012).
[Crossref] [PubMed]

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[Crossref]

Silva, S. F. O.

Tang, C.

Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry-Perot interferometric sensors,” Smart Mater. Struct. 17(5), 055013 (2008).
[Crossref]

Taylor, H. F.

Tsai, H.-L.

Villatoro, J.

Wang, A.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[Crossref]

Wang, D. H.

Wang, S. J.

Wei, T.

Xiao, G. Z.

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[Crossref]

Xiao, H.

Yan, Z.

Yang, X. C.

Zhang, L.

Zhang, Z.

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[Crossref]

Zhou, K.

Zhu, T.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (2)

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[Crossref]

O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low loss splice in a microstructured fibre using a conventional fusion splicer,” Microw. Opt. Technol. Lett. 46(2), 172–174 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

M. S. Ferreira, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Spatial optical filter sensor based on hollow-core silica tube,” Opt. Lett. 37(5), 890–892 (2012).
[Crossref] [PubMed]

T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[Crossref] [PubMed]

Y. Chen and H. F. Taylor, “Multiplexed fiber Fabry-Perot temperature sensor system using white-light interferometry,” Opt. Lett. 27(11), 903–905 (2002).
[Crossref] [PubMed]

Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
[Crossref] [PubMed]

Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
[Crossref] [PubMed]

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref] [PubMed]

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
[Crossref] [PubMed]

D. H. Wang, S. J. Wang, and P. G. Jia, “In-line silica capillary tube all-silica fiber-optic Fabry-Perot interferometric sensor for detecting high intensity focused ultrasound fields,” Opt. Lett. 37(11), 2046–2048 (2012).
[Crossref] [PubMed]

Sensor. Actuat. A-Phys. (1)

Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys. 148, 33–38 (2008).

Smart Mater. Struct. (2)

Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry-Perot interferometric sensors,” Smart Mater. Struct. 17(5), 055013 (2008).
[Crossref]

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Theoretical response of the normalized strain coefficient with the Fabry-Pérot cavity length, for three different single mode fibers: SMF28, SM800 and SM1500.

Fig. 2
Fig. 2

Scheme of the experimental setup. The micrographs presented are the cross section of the large hollow core photonic crystal fiber and the longitudinal image of the 207 μm long Fabry-Pérot cavity.

Fig. 3
Fig. 3

Spectra of the four different sensing heads. The FP cavity lengths are a) LFP = 13 μm, b) LFP = 35 μm, c) LFP = 207 μm, d) LFP = 906 μm. The spectrum shift with the applied strain is also present for each sensing head.

Fig. 4
Fig. 4

(a) Wavelength variation upon applied strain, for the four sensing heads. (b) Variation of sensitivity with the FP cavity length, considering both theoretical curve and experimental values; inset: photograph of the 13 μm long sensing head.

Fig. 5
Fig. 5

(a) Wavelength variation upon applied strain, for the 207 μm long FP cavity, considering three different total lengths: LT = 706 mm, LT = 342 mm and LT = 170 mm. (b) Variation of sensitivity with the total length, considering both theoretical curve and experimental values.

Fig. 6
Fig. 6

a) Spectra of the 207 μm long sensing head when subjected to temperature variations. b) Wavelength dependence with temperature.

Tables (1)

Tables Icon

Table 1 Strain sensitivity for different cavities structure

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ε FP E V FP =Δ ε SMF E V SMF
k ε( FP ) k ε0 = L FP + L SMF L FP + V FP A SMF

Metrics