Abstract

A high sensitivity Fabry-Pérot (FP) strain sensor based on hollow-core ring photonic crystal fiber was investigated. A low-finesse FP cavity was fabricated by splicing a section of hollow-core ring photonic crystal fiber between two standard single mode fibers. The geometry presents a low cross section area of silica enabling to achieve high strain sensitivity. Strain measurements were performed by considering the FP cavity length in a range of 1000 μm. The total length of the strain gauge at which strain was applied was also studied for a range of 900 mm. The FP cavity length variation highly influenced the strain sensitivity, and for a length of 13 μm a sensitivity of 15.4 pm/με was attained. Relatively to the strain gauge length, its dependence to strain sensitivity is low. Finally, the FP cavity presented residual temperature sensitivity (~0.81 pm/°C).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Chen and H. F. Taylor, “Multiplexed fiber Fabry-Perot temperature sensor system using white-light interferometry,” Opt. Lett. 27(11), 903–905 (2002).
    [CrossRef] [PubMed]
  2. M. Linec and D. Donlagić, “Quasi-distributed long-gauge fiber optic sensor system,” Opt. Express 17(14), 11515–11529 (2009).
    [CrossRef] [PubMed]
  3. O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
    [CrossRef]
  4. R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
    [CrossRef]
  5. G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
    [CrossRef]
  6. Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry-Perot interferometric sensors,” Smart Mater. Struct. 17(5), 055013 (2008).
    [CrossRef]
  7. T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [CrossRef] [PubMed]
  8. K. Zhou, Z. Yan, L. Zhang, and I. Bennion, “Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel,” Opt. Express 19(12), 11769–11779 (2011).
    [CrossRef] [PubMed]
  9. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
    [CrossRef] [PubMed]
  10. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [CrossRef] [PubMed]
  11. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
    [CrossRef] [PubMed]
  12. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
    [CrossRef] [PubMed]
  13. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
    [CrossRef] [PubMed]
  14. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [CrossRef] [PubMed]
  15. D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
    [CrossRef]
  16. O. Frazão, S. F. O. Silva, A. Guerreiro, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Strain sensitivity control of fiber Bragg grating structures with fused tapers,” Appl. Opt. 46(36), 8578–8582 (2007).
    [CrossRef] [PubMed]
  17. O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low loss splice in a microstructured fibre using a conventional fusion splicer,” Microw. Opt. Technol. Lett. 46(2), 172–174 (2005).
    [CrossRef]
  18. D. H. Wang, S. J. Wang, and P. G. Jia, “In-line silica capillary tube all-silica fiber-optic Fabry-Perot interferometric sensor for detecting high intensity focused ultrasound fields,” Opt. Lett. 37(11), 2046–2048 (2012).
    [CrossRef] [PubMed]
  19. Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys. 148, 33–38 (2008).
  20. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
    [CrossRef] [PubMed]
  21. M. S. Ferreira, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Spatial optical filter sensor based on hollow-core silica tube,” Opt. Lett. 37(5), 890–892 (2012).
    [CrossRef] [PubMed]

2012 (4)

2011 (1)

2009 (4)

2008 (5)

2007 (3)

2005 (1)

O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low loss splice in a microstructured fibre using a conventional fusion splicer,” Microw. Opt. Technol. Lett. 46(2), 172–174 (2005).
[CrossRef]

2004 (1)

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[CrossRef]

2002 (1)

1992 (1)

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[CrossRef]

Adnet, A.

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[CrossRef]

Amezcua-Correa, R.

Araujo, L.

Araújo, F. M.

Aref, S. H.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
[CrossRef] [PubMed]

Baptista, J. M.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Bennion, I.

Bouwmans, G.

Caldas, P.

Carvalho, J. P.

Chen, Y.

Chiang, K. S.

Choi, E. S.

Choi, H. Y.

Claus, R. O.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[CrossRef]

Coviello, G.

Deng, H. Y.

Deng, M.

Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys. 148, 33–38 (2008).

Donlagic, D.

Duan, D. W.

Duan, D.-W.

D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
[CrossRef]

Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys. 148, 33–38 (2008).

Farahi, F.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
[CrossRef] [PubMed]

Favero, F. C.

Ferreira, L. A.

Ferreira, M. S.

Finazzi, V.

Frazão, O.

Grover, C. P.

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[CrossRef]

Guerreiro, A.

Gunther, M. F.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[CrossRef]

Han, Y.

Jia, P. G.

Jiang, Y.

Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry-Perot interferometric sensors,” Smart Mater. Struct. 17(5), 055013 (2008).
[CrossRef]

Knight, J. C.

Kobelke, J.

M. S. Ferreira, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Spatial optical filter sensor based on hollow-core silica tube,” Opt. Lett. 37(5), 890–892 (2012).
[CrossRef] [PubMed]

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Latifi, H.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
[CrossRef] [PubMed]

Lee, B. H.

Liao, X.

Linec, M.

Liu, W. J.

Lu, Z.

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[CrossRef]

Murphy, K. A.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[CrossRef]

Paek, U. C.

Park, K. S.

Park, S. J.

Pruneri, V.

Ran, Z. L.

Rao, Y. J.

Rao, Y.-J.

D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
[CrossRef]

Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys. 148, 33–38 (2008).

Salgado, H. M.

O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low loss splice in a microstructured fibre using a conventional fusion splicer,” Microw. Opt. Technol. Lett. 46(2), 172–174 (2005).
[CrossRef]

Santos, J. L.

Schuster, K.

M. S. Ferreira, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Spatial optical filter sensor based on hollow-core silica tube,” Opt. Lett. 37(5), 890–892 (2012).
[CrossRef] [PubMed]

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Silva, S. F. O.

Tang, C.

Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry-Perot interferometric sensors,” Smart Mater. Struct. 17(5), 055013 (2008).
[CrossRef]

Taylor, H. F.

Tsai, H.-L.

Villatoro, J.

Wang, A.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[CrossRef]

Wang, D. H.

Wang, S. J.

Wei, T.

Xiao, G. Z.

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[CrossRef]

Xiao, H.

Yan, Z.

Yang, X. C.

Zhang, L.

Zhang, Z.

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[CrossRef]

Zhou, K.

Zhu, T.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (2)

G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett. 42(6), 486–489 (2004).
[CrossRef]

O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low loss splice in a microstructured fibre using a conventional fusion splicer,” Microw. Opt. Technol. Lett. 46(2), 172–174 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (8)

M. S. Ferreira, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Spatial optical filter sensor based on hollow-core silica tube,” Opt. Lett. 37(5), 890–892 (2012).
[CrossRef] [PubMed]

T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

Y. Chen and H. F. Taylor, “Multiplexed fiber Fabry-Perot temperature sensor system using white-light interferometry,” Opt. Lett. 27(11), 903–905 (2002).
[CrossRef] [PubMed]

Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
[CrossRef] [PubMed]

Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
[CrossRef] [PubMed]

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
[CrossRef] [PubMed]

D. H. Wang, S. J. Wang, and P. G. Jia, “In-line silica capillary tube all-silica fiber-optic Fabry-Perot interferometric sensor for detecting high intensity focused ultrasound fields,” Opt. Lett. 37(11), 2046–2048 (2012).
[CrossRef] [PubMed]

Sensor. Actuat. A-Phys. (1)

Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys. 148, 33–38 (2008).

Smart Mater. Struct. (2)

Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry-Perot interferometric sensors,” Smart Mater. Struct. 17(5), 055013 (2008).
[CrossRef]

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Theoretical response of the normalized strain coefficient with the Fabry-Pérot cavity length, for three different single mode fibers: SMF28, SM800 and SM1500.

Fig. 2
Fig. 2

Scheme of the experimental setup. The micrographs presented are the cross section of the large hollow core photonic crystal fiber and the longitudinal image of the 207 μm long Fabry-Pérot cavity.

Fig. 3
Fig. 3

Spectra of the four different sensing heads. The FP cavity lengths are a) LFP = 13 μm, b) LFP = 35 μm, c) LFP = 207 μm, d) LFP = 906 μm. The spectrum shift with the applied strain is also present for each sensing head.

Fig. 4
Fig. 4

(a) Wavelength variation upon applied strain, for the four sensing heads. (b) Variation of sensitivity with the FP cavity length, considering both theoretical curve and experimental values; inset: photograph of the 13 μm long sensing head.

Fig. 5
Fig. 5

(a) Wavelength variation upon applied strain, for the 207 μm long FP cavity, considering three different total lengths: LT = 706 mm, LT = 342 mm and LT = 170 mm. (b) Variation of sensitivity with the total length, considering both theoretical curve and experimental values.

Fig. 6
Fig. 6

a) Spectra of the 207 μm long sensing head when subjected to temperature variations. b) Wavelength dependence with temperature.

Tables (1)

Tables Icon

Table 1 Strain sensitivity for different cavities structure

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ε FP E V FP =Δ ε SMF E V SMF
k ε( FP ) k ε0 = L FP + L SMF L FP + V FP A SMF

Metrics