Abstract

We design, fabricate and characterise a narrowband Fabry-Pérot multispectral filter set for the visible range (400–750nm) that is suitable for integration onto complementary-metal oxide-semiconductor image sensors. We reduce the fabrication steps by fixing the physical cavity length and altering the effective optical length instead. Using electron-beam lithography, a sub-wavelength hole array is patterned in a silicon nitride cavity layer, backfilled with poly(methyl methacrylate), and bounded by aluminium mirrors to create 23 filters with full-width half-maximums of 22–46nm. Additionally, for colourmetric reproduction applications, using as few as 10 filters gives a colour difference (CIEDE2000) of 0.072, better than trichromatic filters.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Tilling, G. O’Leary, J. G. Ferwerda, S. D. Jones, G. Fitzgerald, and R. Belford, “Remote sensing to detect nitrogen and water stress in wheat,” in Proc. 13th ASA Conference. N. C. Turner, T. Acuna, and R. C. Johnson, eds. (2006) pp.10–14.
  2. A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends in Food Sci. and Tech. 18, 590–598 (2007).
    [CrossRef]
  3. H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A: Material Sci. and Process. 106, 309–323 (2012).
    [CrossRef]
  4. I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. of Biomedical Optics Let. 16, 1–3 (2011).
  5. R. M. Levenson, D. T. Lynch, H. Kobayashi, J. M. Backer, and M. V. Backer, “Multiplexing with multispectral imaging: from mice to microscopy,” ILAR Journal 49, 78–88 (2008).
    [PubMed]
  6. S. Zhi-Xue, L. Jian-Feng, Z. Da-Yong, L. Yong-Quan, L. Yan, H. Li-Xian, L. Hai-Tao, and L. Fei, “Research on LC-based spectral imaging system for visible band,” Proc. SPIE 8181, 1–7 (2011).
  7. A. Mehta, R. C. Rumpf, Z. Roth, and E. G. Johnson, “Nanofabrication of a space-variant optical transmission filter, ” Opt. Lett. 31, 2903–2905 (2006)
    [CrossRef] [PubMed]
  8. L. Frey, P. Parrein, J. Raby, C. Pelle, D. Herault, M. Marty, and J. Michailos “Color filters including infrared cut-off integrated on CMOS image sensor,” Opt. Express 19, 13073 – 13080 (2011).
    [CrossRef] [PubMed]
  9. A. Mitra, H. Harutyunyan, S. Palomba, and L. Novotnyo, “Tuning the cavity modes of a fabry-perot resonator using gold nanoparticles,” Opt. Lett. 35, 953 – 955 (2010).
    [CrossRef] [PubMed]
  10. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JETP 2, 466–475 (1956).
  11. A. Wong and A. R. Neureuther, “Rigorous three-dimensional time-domain finite-difference electromagnetic simulation for photolithographic applications,” IEEE Trans. Semicond. Manuf. 8, 419–431 (1995).
    [CrossRef]
  12. A. Vial and T. Laroche, “Description of the dispersion properties of metals by means of the critical points model and the application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys 40, 7152–7158 (2007).
    [CrossRef]
  13. Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, (2012).
    [CrossRef] [PubMed]
  14. H. Zhou, C. Sim, A. Glidle, C. Hodson, R. Kinsey, and C. D. W. Wilkinson, Properties of Silicon Nitride by Room-temperature Inductively Coupled Plasma Deposition (Wiley-VCH Verlag GmbH and Co. KGaA, 2005) 77–86.
  15. J. H. Davies, The Physics of Low-dimensional Semiconductors : An Introduction (Cambridge University Press, 1998).
  16. E. Hecht, Optics (Addison-Wesley, 2002).
  17. G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
    [CrossRef]
  18. R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22, 34–34 (2005).
    [CrossRef]

2012 (2)

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A: Material Sci. and Process. 106, 309–323 (2012).
[CrossRef]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, (2012).
[CrossRef] [PubMed]

2011 (3)

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. of Biomedical Optics Let. 16, 1–3 (2011).

S. Zhi-Xue, L. Jian-Feng, Z. Da-Yong, L. Yong-Quan, L. Yan, H. Li-Xian, L. Hai-Tao, and L. Fei, “Research on LC-based spectral imaging system for visible band,” Proc. SPIE 8181, 1–7 (2011).

L. Frey, P. Parrein, J. Raby, C. Pelle, D. Herault, M. Marty, and J. Michailos “Color filters including infrared cut-off integrated on CMOS image sensor,” Opt. Express 19, 13073 – 13080 (2011).
[CrossRef] [PubMed]

2010 (1)

2008 (1)

R. M. Levenson, D. T. Lynch, H. Kobayashi, J. M. Backer, and M. V. Backer, “Multiplexing with multispectral imaging: from mice to microscopy,” ILAR Journal 49, 78–88 (2008).
[PubMed]

2007 (2)

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends in Food Sci. and Tech. 18, 590–598 (2007).
[CrossRef]

A. Vial and T. Laroche, “Description of the dispersion properties of metals by means of the critical points model and the application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys 40, 7152–7158 (2007).
[CrossRef]

2006 (1)

2005 (2)

G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22, 34–34 (2005).
[CrossRef]

1995 (1)

A. Wong and A. R. Neureuther, “Rigorous three-dimensional time-domain finite-difference electromagnetic simulation for photolithographic applications,” IEEE Trans. Semicond. Manuf. 8, 419–431 (1995).
[CrossRef]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JETP 2, 466–475 (1956).

Backer, J. M.

R. M. Levenson, D. T. Lynch, H. Kobayashi, J. M. Backer, and M. V. Backer, “Multiplexing with multispectral imaging: from mice to microscopy,” ILAR Journal 49, 78–88 (2008).
[PubMed]

Backer, M. V.

R. M. Levenson, D. T. Lynch, H. Kobayashi, J. M. Backer, and M. V. Backer, “Multiplexing with multispectral imaging: from mice to microscopy,” ILAR Journal 49, 78–88 (2008).
[PubMed]

Belford, R.

A. K. Tilling, G. O’Leary, J. G. Ferwerda, S. D. Jones, G. Fitzgerald, and R. Belford, “Remote sensing to detect nitrogen and water stress in wheat,” in Proc. 13th ASA Conference. N. C. Turner, T. Acuna, and R. C. Johnson, eds. (2006) pp.10–14.

Berzina, A.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. of Biomedical Optics Let. 16, 1–3 (2011).

Chen, Q.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, (2012).
[CrossRef] [PubMed]

Chitnis, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, (2012).
[CrossRef] [PubMed]

Collins, S.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, (2012).
[CrossRef] [PubMed]

Cullen, P. J.

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends in Food Sci. and Tech. 18, 590–598 (2007).
[CrossRef]

Cumming, D. R. S.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, (2012).
[CrossRef] [PubMed]

Dalal, E. N.

G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

Das, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, (2012).
[CrossRef] [PubMed]

Davies, J. H.

J. H. Davies, The Physics of Low-dimensional Semiconductors : An Introduction (Cambridge University Press, 1998).

Da-Yong, Z.

S. Zhi-Xue, L. Jian-Feng, Z. Da-Yong, L. Yong-Quan, L. Yan, H. Li-Xian, L. Hai-Tao, and L. Fei, “Research on LC-based spectral imaging system for visible band,” Proc. SPIE 8181, 1–7 (2011).

Diebele, I.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. of Biomedical Optics Let. 16, 1–3 (2011).

Downey, G.

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends in Food Sci. and Tech. 18, 590–598 (2007).
[CrossRef]

Drew, M. S.

R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22, 34–34 (2005).
[CrossRef]

Drysdale, T. D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, (2012).
[CrossRef] [PubMed]

Fei, L.

S. Zhi-Xue, L. Jian-Feng, Z. Da-Yong, L. Yong-Quan, L. Yan, H. Li-Xian, L. Hai-Tao, and L. Fei, “Research on LC-based spectral imaging system for visible band,” Proc. SPIE 8181, 1–7 (2011).

Ferwerda, J. G.

A. K. Tilling, G. O’Leary, J. G. Ferwerda, S. D. Jones, G. Fitzgerald, and R. Belford, “Remote sensing to detect nitrogen and water stress in wheat,” in Proc. 13th ASA Conference. N. C. Turner, T. Acuna, and R. C. Johnson, eds. (2006) pp.10–14.

Fitzgerald, G.

A. K. Tilling, G. O’Leary, J. G. Ferwerda, S. D. Jones, G. Fitzgerald, and R. Belford, “Remote sensing to detect nitrogen and water stress in wheat,” in Proc. 13th ASA Conference. N. C. Turner, T. Acuna, and R. C. Johnson, eds. (2006) pp.10–14.

Frey, L.

Frias, J. M.

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends in Food Sci. and Tech. 18, 590–598 (2007).
[CrossRef]

Glidle, A.

H. Zhou, C. Sim, A. Glidle, C. Hodson, R. Kinsey, and C. D. W. Wilkinson, Properties of Silicon Nitride by Room-temperature Inductively Coupled Plasma Deposition (Wiley-VCH Verlag GmbH and Co. KGaA, 2005) 77–86.

Gowen, A. A.

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends in Food Sci. and Tech. 18, 590–598 (2007).
[CrossRef]

Hai-Tao, L.

S. Zhi-Xue, L. Jian-Feng, Z. Da-Yong, L. Yong-Quan, L. Yan, H. Li-Xian, L. Hai-Tao, and L. Fei, “Research on LC-based spectral imaging system for visible band,” Proc. SPIE 8181, 1–7 (2011).

Harutyunyan, H.

Hecht, E.

E. Hecht, Optics (Addison-Wesley, 2002).

Herault, D.

Hodson, C.

H. Zhou, C. Sim, A. Glidle, C. Hodson, R. Kinsey, and C. D. W. Wilkinson, Properties of Silicon Nitride by Room-temperature Inductively Coupled Plasma Deposition (Wiley-VCH Verlag GmbH and Co. KGaA, 2005) 77–86.

Jakovels, D.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. of Biomedical Optics Let. 16, 1–3 (2011).

Jian-Feng, L.

S. Zhi-Xue, L. Jian-Feng, Z. Da-Yong, L. Yong-Quan, L. Yan, H. Li-Xian, L. Hai-Tao, and L. Fei, “Research on LC-based spectral imaging system for visible band,” Proc. SPIE 8181, 1–7 (2011).

Johnson, E. G.

Jones, S. D.

A. K. Tilling, G. O’Leary, J. G. Ferwerda, S. D. Jones, G. Fitzgerald, and R. Belford, “Remote sensing to detect nitrogen and water stress in wheat,” in Proc. 13th ASA Conference. N. C. Turner, T. Acuna, and R. C. Johnson, eds. (2006) pp.10–14.

Kapostinsh, J.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. of Biomedical Optics Let. 16, 1–3 (2011).

Kinsey, R.

H. Zhou, C. Sim, A. Glidle, C. Hodson, R. Kinsey, and C. D. W. Wilkinson, Properties of Silicon Nitride by Room-temperature Inductively Coupled Plasma Deposition (Wiley-VCH Verlag GmbH and Co. KGaA, 2005) 77–86.

Kobayashi, H.

R. M. Levenson, D. T. Lynch, H. Kobayashi, J. M. Backer, and M. V. Backer, “Multiplexing with multispectral imaging: from mice to microscopy,” ILAR Journal 49, 78–88 (2008).
[PubMed]

Kuzmina, I.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. of Biomedical Optics Let. 16, 1–3 (2011).

Laroche, T.

A. Vial and T. Laroche, “Description of the dispersion properties of metals by means of the critical points model and the application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys 40, 7152–7158 (2007).
[CrossRef]

Levenson, R. M.

R. M. Levenson, D. T. Lynch, H. Kobayashi, J. M. Backer, and M. V. Backer, “Multiplexing with multispectral imaging: from mice to microscopy,” ILAR Journal 49, 78–88 (2008).
[PubMed]

Liang, H.

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A: Material Sci. and Process. 106, 309–323 (2012).
[CrossRef]

Li-Xian, H.

S. Zhi-Xue, L. Jian-Feng, Z. Da-Yong, L. Yong-Quan, L. Yan, H. Li-Xian, L. Hai-Tao, and L. Fei, “Research on LC-based spectral imaging system for visible band,” Proc. SPIE 8181, 1–7 (2011).

Lynch, D. T.

R. M. Levenson, D. T. Lynch, H. Kobayashi, J. M. Backer, and M. V. Backer, “Multiplexing with multispectral imaging: from mice to microscopy,” ILAR Journal 49, 78–88 (2008).
[PubMed]

Marty, M.

Mehta, A.

Michailos, J.

Mitra, A.

Neureuther, A. R.

A. Wong and A. R. Neureuther, “Rigorous three-dimensional time-domain finite-difference electromagnetic simulation for photolithographic applications,” IEEE Trans. Semicond. Manuf. 8, 419–431 (1995).
[CrossRef]

Novotnyo, L.

O’Donnell, C. P.

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends in Food Sci. and Tech. 18, 590–598 (2007).
[CrossRef]

O’Leary, G.

A. K. Tilling, G. O’Leary, J. G. Ferwerda, S. D. Jones, G. Fitzgerald, and R. Belford, “Remote sensing to detect nitrogen and water stress in wheat,” in Proc. 13th ASA Conference. N. C. Turner, T. Acuna, and R. C. Johnson, eds. (2006) pp.10–14.

Palomba, S.

Parrein, P.

Pelle, C.

Raby, J.

Ramanath, R.

R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22, 34–34 (2005).
[CrossRef]

Roth, Z.

Rumpf, R. C.

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JETP 2, 466–475 (1956).

Sharma, G.

G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

Sim, C.

H. Zhou, C. Sim, A. Glidle, C. Hodson, R. Kinsey, and C. D. W. Wilkinson, Properties of Silicon Nitride by Room-temperature Inductively Coupled Plasma Deposition (Wiley-VCH Verlag GmbH and Co. KGaA, 2005) 77–86.

Snyder, W. E.

R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22, 34–34 (2005).
[CrossRef]

Spigulis, J.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. of Biomedical Optics Let. 16, 1–3 (2011).

Tilling, A. K.

A. K. Tilling, G. O’Leary, J. G. Ferwerda, S. D. Jones, G. Fitzgerald, and R. Belford, “Remote sensing to detect nitrogen and water stress in wheat,” in Proc. 13th ASA Conference. N. C. Turner, T. Acuna, and R. C. Johnson, eds. (2006) pp.10–14.

Valeine, L.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. of Biomedical Optics Let. 16, 1–3 (2011).

Vial, A.

A. Vial and T. Laroche, “Description of the dispersion properties of metals by means of the critical points model and the application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys 40, 7152–7158 (2007).
[CrossRef]

Walls, K.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, (2012).
[CrossRef] [PubMed]

Wilkinson, C. D. W.

H. Zhou, C. Sim, A. Glidle, C. Hodson, R. Kinsey, and C. D. W. Wilkinson, Properties of Silicon Nitride by Room-temperature Inductively Coupled Plasma Deposition (Wiley-VCH Verlag GmbH and Co. KGaA, 2005) 77–86.

Wong, A.

A. Wong and A. R. Neureuther, “Rigorous three-dimensional time-domain finite-difference electromagnetic simulation for photolithographic applications,” IEEE Trans. Semicond. Manuf. 8, 419–431 (1995).
[CrossRef]

Wu, W.

G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

Yan, L.

S. Zhi-Xue, L. Jian-Feng, Z. Da-Yong, L. Yong-Quan, L. Yan, H. Li-Xian, L. Hai-Tao, and L. Fei, “Research on LC-based spectral imaging system for visible band,” Proc. SPIE 8181, 1–7 (2011).

Yong-Quan, L.

S. Zhi-Xue, L. Jian-Feng, Z. Da-Yong, L. Yong-Quan, L. Yan, H. Li-Xian, L. Hai-Tao, and L. Fei, “Research on LC-based spectral imaging system for visible band,” Proc. SPIE 8181, 1–7 (2011).

Yoo, Y.

R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22, 34–34 (2005).
[CrossRef]

Zhi-Xue, S.

S. Zhi-Xue, L. Jian-Feng, Z. Da-Yong, L. Yong-Quan, L. Yan, H. Li-Xian, L. Hai-Tao, and L. Fei, “Research on LC-based spectral imaging system for visible band,” Proc. SPIE 8181, 1–7 (2011).

Zhou, H.

H. Zhou, C. Sim, A. Glidle, C. Hodson, R. Kinsey, and C. D. W. Wilkinson, Properties of Silicon Nitride by Room-temperature Inductively Coupled Plasma Deposition (Wiley-VCH Verlag GmbH and Co. KGaA, 2005) 77–86.

Appl. Phys. A: Material Sci. and Process. (1)

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A: Material Sci. and Process. 106, 309–323 (2012).
[CrossRef]

Color Res. Appl. (1)

G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

IEEE Signal Process. Mag. (1)

R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22, 34–34 (2005).
[CrossRef]

IEEE Trans. Semicond. Manuf. (1)

A. Wong and A. R. Neureuther, “Rigorous three-dimensional time-domain finite-difference electromagnetic simulation for photolithographic applications,” IEEE Trans. Semicond. Manuf. 8, 419–431 (1995).
[CrossRef]

ILAR Journal (1)

R. M. Levenson, D. T. Lynch, H. Kobayashi, J. M. Backer, and M. V. Backer, “Multiplexing with multispectral imaging: from mice to microscopy,” ILAR Journal 49, 78–88 (2008).
[PubMed]

J. of Biomedical Optics Let. (1)

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. of Biomedical Optics Let. 16, 1–3 (2011).

J. Phys. D: Appl. Phys (1)

A. Vial and T. Laroche, “Description of the dispersion properties of metals by means of the critical points model and the application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys 40, 7152–7158 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Plasmonics (1)

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, (2012).
[CrossRef] [PubMed]

Proc. SPIE (1)

S. Zhi-Xue, L. Jian-Feng, Z. Da-Yong, L. Yong-Quan, L. Yan, H. Li-Xian, L. Hai-Tao, and L. Fei, “Research on LC-based spectral imaging system for visible band,” Proc. SPIE 8181, 1–7 (2011).

Soviet Physics JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JETP 2, 466–475 (1956).

Trends in Food Sci. and Tech. (1)

A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends in Food Sci. and Tech. 18, 590–598 (2007).
[CrossRef]

Other (4)

A. K. Tilling, G. O’Leary, J. G. Ferwerda, S. D. Jones, G. Fitzgerald, and R. Belford, “Remote sensing to detect nitrogen and water stress in wheat,” in Proc. 13th ASA Conference. N. C. Turner, T. Acuna, and R. C. Johnson, eds. (2006) pp.10–14.

H. Zhou, C. Sim, A. Glidle, C. Hodson, R. Kinsey, and C. D. W. Wilkinson, Properties of Silicon Nitride by Room-temperature Inductively Coupled Plasma Deposition (Wiley-VCH Verlag GmbH and Co. KGaA, 2005) 77–86.

J. H. Davies, The Physics of Low-dimensional Semiconductors : An Introduction (Cambridge University Press, 1998).

E. Hecht, Optics (Addison-Wesley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the filter vertical cross section. (b) A plot of the cavity neff using Eq.1, with d=60nm (solid), 100nm (– –) and 180nm (···) for Λ=200nm. This is compared to the neff calculated from FDTD simulation for tSiN =800nm (black), 500nm (green), 200nm (blue). With d=60nm (square), 100nm (diamond) and 180nm (cross).

Fig. 2
Fig. 2

The FDTD simulated spectral response of a filter set with Λ=200nm. 3D sketches identify structure type and thickness. Taller sketches (see legend) represent tSiN =240nm; shorter, tSiN =150nm.

Fig. 3
Fig. 3

The measured spectral response of the filters. Line colours indicate nominal hole diameter in mask before EB dosage adjustment. A montage of the white-light microscope images of the filters is shown (Insert).

Fig. 4
Fig. 4

Analysis of the fabricated structure (a) scanning electron micrograph of cross section, (b) measured (without additional filter) and simulated transmission for both PMMA-Si3N4 and PMMA-Si-rich(60%) SixNy (40%) cavities. The dimensions used are as measured from (a); Al 15nm, tSiN 200nm, overfill 90nm, d 140nm and ARL 85nm. Simulations at non-normal incidence also shown. (c) T-matrix simulations of all 23 measured filters using the Si-rich SixNy model. The effect of the additional filter used in Fig. 3 is included for clarity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n eff ( λ ) = ε T E ( 2 ) ( λ ) + ε T M ( 2 ) ( λ ) 2 ε 0

Metrics