Abstract

We propose and demonstrate a simple method for cylindrical vector beam generation in the terahertz frequency region using optical rectification in segmented nonlinear crystals with threefold rotational symmetry. We used segmented GaP(111) plates to generate the terahertz cylindrical vector beam, and obtained clear evidence of the beam generation with a terahertz camera. By this method, a broadband terahertz cylindrical vector beam can be generated, and the radial and azimuth modes can be easily switched. We also report on the direct observation of the longitudinal electric field components at the focal point using a terahertz time-domain spectroscopy technique.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
    [CrossRef]
  2. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
    [CrossRef]
  3. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [CrossRef] [PubMed]
  4. W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).
    [CrossRef]
  5. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinal polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
    [CrossRef]
  6. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [PubMed]
  7. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt. 45(3), 470–479 (2006).
    [CrossRef] [PubMed]
  8. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [CrossRef] [PubMed]
  9. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–2386 (1998).
    [CrossRef]
  10. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  11. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
    [CrossRef] [PubMed]
  12. W. L. Chan, J. D. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
    [CrossRef]
  13. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
    [CrossRef] [PubMed]
  14. H. Chen, Q. Zhan, Y. L. Zhang, and Y. P. Li, “The Gouy phase shift of the highly focused radially polarized beam,” Phys. Lett. A 371(3), 259–261 (2007).
    [CrossRef]
  15. C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98(23), 235002 (2007).
    [CrossRef] [PubMed]
  16. G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification,” Opt. Lett. 32(4), 433–435 (2007).
    [CrossRef] [PubMed]
  17. S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express 17(3), 1571–1576 (2009).
    [CrossRef] [PubMed]
  18. Q. Chen, M. Tani, Z. Jiang, and X.-C. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B 18(6), 823–831 (2001).
    [CrossRef]
  19. T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
    [CrossRef] [PubMed]
  20. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
    [CrossRef] [PubMed]
  21. Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784–1786 (1997).
    [CrossRef]
  22. K. S. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  23. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin wave,” Nat. Photonics 5(1), 31–34 (2011).
    [CrossRef]
  24. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
    [CrossRef] [PubMed]

2011 (2)

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin wave,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

2010 (1)

2009 (2)

2008 (1)

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinal polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

2007 (6)

H. Chen, Q. Zhan, Y. L. Zhang, and Y. P. Li, “The Gouy phase shift of the highly focused radially polarized beam,” Phys. Lett. A 371(3), 259–261 (2007).
[CrossRef]

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98(23), 235002 (2007).
[CrossRef] [PubMed]

W. L. Chan, J. D. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification,” Opt. Lett. 32(4), 433–435 (2007).
[CrossRef] [PubMed]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[CrossRef] [PubMed]

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[CrossRef] [PubMed]

2006 (3)

2004 (2)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[CrossRef] [PubMed]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

2000 (2)

K. S. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

1998 (1)

1997 (1)

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784–1786 (1997).
[CrossRef]

Biss, D. P.

Brown, T.

Brown, T. G.

Chan, W. L.

W. L. Chan, J. D. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Chang, G.

Chen, H.

H. Chen, Q. Zhan, Y. L. Zhang, and Y. P. Li, “The Gouy phase shift of the highly focused radially polarized beam,” Phys. Lett. A 371(3), 259–261 (2007).
[CrossRef]

Chen, Q.

Chen, W.

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).
[CrossRef]

Chong, C. T.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinal polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

Couairon, A.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98(23), 235002 (2007).
[CrossRef] [PubMed]

D’Amico, C.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98(23), 235002 (2007).
[CrossRef] [PubMed]

Deibel, J. A.

Deibel, J. D.

W. L. Chan, J. D. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Dekorsy, T.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin wave,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Divin, C. J.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Escarra, M. D.

Fiebig, M.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin wave,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Franco, M.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98(23), 235002 (2007).
[CrossRef] [PubMed]

Galvanauskas, A.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Hebling, J.

Helm, M.

Higuchi, T.

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

Hochrein, T.

Hoffmann, M. C.

Houard, A.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98(23), 235002 (2007).
[CrossRef] [PubMed]

Huber, R.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin wave,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Jackel, S.

Jansen, C.

Jiang, Z.

Jördens, C.

Kampfrath, T.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin wave,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Kanda, N.

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

Kano, H.

Kawata, S.

Klatt, G.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin wave,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Koch, M.

Krumbholz, N.

Kuwata-Gonokami, M.

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

Leger, J. R.

Leitenstorfer, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin wave,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Li, Y. P.

H. Chen, Q. Zhan, Y. L. Zhang, and Y. P. Li, “The Gouy phase shift of the highly focused radially polarized beam,” Phys. Lett. A 371(3), 259–261 (2007).
[CrossRef]

Liu, C.-H.

Lukyanchuk, B.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinal polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

Lumer, Y.

Machavariani, G.

Mährlein, S.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin wave,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Meir, A.

Mittleman, D. M.

W. L. Chan, J. D. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Mizuguchi, S.

Moshe, I.

Mysyrowicz, A.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98(23), 235002 (2007).
[CrossRef] [PubMed]

Nelson, K. A.

Norris, T. B.

Pashkin, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin wave,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Peter, F.

Peters, O.

Prade, B.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98(23), 235002 (2007).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Salhi, M.

Scheller, M.

Schneider, H.

Sell, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin wave,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Sheppard, C.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinal polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

Shi, L. P.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinal polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

Tamaru, H.

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

Tani, M.

Tikhonchuk, V. T.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98(23), 235002 (2007).
[CrossRef] [PubMed]

Vieweg, N.

Wang, H. F.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinal polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

Wang, K.

Wietzke, S.

Williamson, S. L.

Winnerl, S.

Wolf, M.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin wave,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Wu, Q.

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784–1786 (1997).
[CrossRef]

Yeh, K.-L.

Youngworth, K. S.

Zhan, Q.

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
[CrossRef]

H. Chen, Q. Zhan, Y. L. Zhang, and Y. P. Li, “The Gouy phase shift of the highly focused radially polarized beam,” Phys. Lett. A 371(3), 259–261 (2007).
[CrossRef]

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).
[CrossRef]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[CrossRef] [PubMed]

Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[PubMed]

Zhang, X.-C.

Q. Chen, M. Tani, Z. Jiang, and X.-C. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B 18(6), 823–831 (2001).
[CrossRef]

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784–1786 (1997).
[CrossRef]

Zhang, Y. L.

H. Chen, Q. Zhan, Y. L. Zhang, and Y. P. Li, “The Gouy phase shift of the highly focused radially polarized beam,” Phys. Lett. A 371(3), 259–261 (2007).
[CrossRef]

Zimmermann, B.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784–1786 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (2)

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin wave,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinal polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Opt. Commun. (2)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Lett. A (1)

H. Chen, Q. Zhan, Y. L. Zhang, and Y. P. Li, “The Gouy phase shift of the highly focused radially polarized beam,” Phys. Lett. A 371(3), 259–261 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98(23), 235002 (2007).
[CrossRef] [PubMed]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

W. L. Chan, J. D. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic picture of the THz radiation from a nonlinear crystal with threefold rotational symmetry. The red (green) arrow indicates the polarization of the fundamental (THz) beam. (b) Schematic picture of the segmented nonlinear crystals for THz CV beam generation. (c) Cutting design of the segmented pieces from a substrate. (d) A photograph of the segmented nonlinear crystals.

Fig. 2
Fig. 2

Relationship between the directions of polarization of the fundamental beam and the radiated CV modes

Fig. 3
Fig. 3

Schematic structures of the experimental setups for (a) the direct imaging of the electric field intensity distribution of the THz CV beams, and (b) the detection of the longitudinal electric field components.

Fig. 4
Fig. 4

The intensity distribution images obtained with a THz camera for the THz radial (a–c) and azimuthal (d–f) CV beams, and for a linearly polarized THz beam (g–i) with the WGP in the horizontal (a, d, g), 45° (b, e, h), and vertical (c, f, i) orientations.

Fig. 5
Fig. 5

Spatial dependence of the obtained time-domain THz waveforms of (a) the transversal and (b) the longitudinal electric fields near the focal point.

Fig. 6
Fig. 6

Spatial dependence of the obtained time-domain THz spectra of (a) the transversal and (b) the longitudinal electric fields near the focal point. (c) and (d): respective corresponding calculated results.

Fig. 7
Fig. 7

Dependence of the longitudinal electric field waveforms on the direction of the segmented nonlinear crystals. (a) radial beam radiation setup; (b) rotated by 45°; and (c) rotated by 90°.

Fig. 8
Fig. 8

(a) THz waveforms and (b) relative phase differences of the transverse and longitudinal electric field components.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E r ( ρ ) 0 α cos 1/2 γsin( 2γ ) E 0 ( γ ) J 1 ( kρsinγ )dγ E z ( ρ )2i 0 α cos 1/2 γ sin 2 ( γ ) E 0 ( γ ) J 0 ( kρsinγ )dγ,

Metrics