Abstract

In this work we theoretically reveal the huge local field enhancement in a so-called perfect plasmonic absorber. We study the power absorption of light in a planar grid modelled as an effective sheet with zero optical thickness. The key prerequisite of the total absorption is the simultaneous presence of both resonant electric and magnetic modes in the structure. We show that the needed level of the magnetic mode is achievable using the effect of substrate-induced bianisotropy. On the microscopic level this bianisotropy is a factor which results in the huge local field enhancement at the same wavelength where the maximal absorption holds.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
    [CrossRef]
  2. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
    [CrossRef]
  3. K. Emery, “Characterizing thermophotovoltaic cells,” Semicond. Sci. Technol. 18, S228–S231 (2003).
    [CrossRef]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
    [CrossRef]
  5. R. M. A. Azzam, E. Bu-Habib, J. Casset, G. Chassaing, and P. Gravier, “Antireflection of an absorbing substrate by an absorbing thin film at normal incidence,” Appl. Opt. 26, 719–722 (1987).
    [CrossRef]
  6. K. J. Vinoy and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization (Kluwer: Boston, USA, 1999).
  7. W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
    [CrossRef]
  8. N. Liu, M. Mesch, T.s Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [CrossRef]
  9. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19, 17413–17420 (2011).
    [CrossRef]
  10. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011).
    [CrossRef]
  11. C.L. Holloway, M.A. Mohamed, E.F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electro-magn. Compat. 47, 853–865 (2005).
    [CrossRef]
  12. C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
    [CrossRef]
  13. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
    [CrossRef]
  14. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
    [CrossRef]
  15. K. Watanabe, D. Menzel, N. Nilius, and H. J. Freund, “Photochemistry on metal nanoparticles,” Chem. Rev. 106, 4301–4320 (2006).
    [CrossRef]
  16. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef]
  17. B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).
  18. E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier: Oxford, UK, 2009).
  19. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering, Physics and Applications (Eds., Springer: Berlin–Heidelberg–New York, 2006).
    [CrossRef]
  20. Y. Chu, Mohamad G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4, 2804–2810 (2010).
    [CrossRef]
  21. M. Albooyeh and C. Simovski, “Substrate-induced bianisotropy in plasmonic grids,” J. Opt. 13, 105102 (2011).
    [CrossRef]
  22. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano. Lett. 4, 153–158 (2004).
    [CrossRef]
  23. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
    [CrossRef]
  24. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
    [CrossRef]
  25. V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys.Rev. B 75, 024303 (2007).
    [CrossRef]
  26. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  27. A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach Science: Amsterdam, The Netherlands, 2001).
  28. J. C. Vardaxoglu, Frequency Selective Surfaces: Theory and Design (Research Studies Press, Ltd.: Taunton, UK, 1997).
  29. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34, 244–246 (2010).
    [CrossRef]

2011

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
[CrossRef]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011).
[CrossRef]

M. Albooyeh and C. Simovski, “Substrate-induced bianisotropy in plasmonic grids,” J. Opt. 13, 105102 (2011).
[CrossRef]

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19, 17413–17420 (2011).
[CrossRef]

2010

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
[CrossRef]

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34, 244–246 (2010).
[CrossRef]

N. Liu, M. Mesch, T.s Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Y. Chu, Mohamad G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4, 2804–2810 (2010).
[CrossRef]

2008

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

2007

V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys.Rev. B 75, 024303 (2007).
[CrossRef]

2006

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

K. Watanabe, D. Menzel, N. Nilius, and H. J. Freund, “Photochemistry on metal nanoparticles,” Chem. Rev. 106, 4301–4320 (2006).
[CrossRef]

2005

C.L. Holloway, M.A. Mohamed, E.F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electro-magn. Compat. 47, 853–865 (2005).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

2004

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano. Lett. 4, 153–158 (2004).
[CrossRef]

2003

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

K. Emery, “Characterizing thermophotovoltaic cells,” Semicond. Sci. Technol. 18, S228–S231 (2003).
[CrossRef]

2002

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

2000

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

1988

B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).

1987

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011).
[CrossRef]

Albooyeh, M.

M. Albooyeh and C. Simovski, “Substrate-induced bianisotropy in plasmonic grids,” J. Opt. 13, 105102 (2011).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Azzam, R. M. A.

Banaee, Mohamad G.

Y. Chu, Mohamad G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4, 2804–2810 (2010).
[CrossRef]

Biswas, R.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

Brongersma, M. L.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Bu-Habib, E.

Cao, H.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Casset, J.

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011).
[CrossRef]

Chassaing, G.

Chen, G.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef]

Chong, Y. D.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Chu, Y.

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34, 244–246 (2010).
[CrossRef]

Y. Chu, Mohamad G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4, 2804–2810 (2010).
[CrossRef]

Collins, R. W.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Crozier, K. B.

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34, 244–246 (2010).
[CrossRef]

Y. Chu, Mohamad G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4, 2804–2810 (2010).
[CrossRef]

Deng, X.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Dienstfrey, A.

C.L. Holloway, M.A. Mohamed, E.F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electro-magn. Compat. 47, 853–865 (2005).
[CrossRef]

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011).
[CrossRef]

El-Kady, I.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

Emery, K.

K. Emery, “Characterizing thermophotovoltaic cells,” Semicond. Sci. Technol. 18, S228–S231 (2003).
[CrossRef]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier: Oxford, UK, 2009).

Fan, S.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011).
[CrossRef]

Feng, Q.

Ferlauto, A. S.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Ferreira, G. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Freund, H. J.

K. Watanabe, D. Menzel, N. Nilius, and H. J. Freund, “Photochemistry on metal nanoparticles,” Chem. Rev. 106, 4301–4320 (2006).
[CrossRef]

Ganguly, G.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Ge, L.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Genov, D. A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano. Lett. 4, 153–158 (2004).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T.s Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Gravier, P.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

Guzatov, D. V.

V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys.Rev. B 75, 024303 (2007).
[CrossRef]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011).
[CrossRef]

Hentschel, M.

N. Liu, M. Mesch, T.s Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Ho, K. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

Holloway, C.L.

C.L. Holloway, M.A. Mohamed, E.F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electro-magn. Compat. 47, 853–865 (2005).
[CrossRef]

Hu, C.

Huang, C.

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011).
[CrossRef]

Jha, R. M.

K. J. Vinoy and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization (Kluwer: Boston, USA, 1999).

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Joannopoulos, J. D.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Klimov, V. V.

V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys.Rev. B 75, 024303 (2007).
[CrossRef]

Kneipp, H.

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering, Physics and Applications (Eds., Springer: Berlin–Heidelberg–New York, 2006).
[CrossRef]

Kneipp, K.

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering, Physics and Applications (Eds., Springer: Berlin–Heidelberg–New York, 2006).
[CrossRef]

Knoll, W.

B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).

Kuester, E.F.

C.L. Holloway, M.A. Mohamed, E.F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electro-magn. Compat. 47, 853–865 (2005).
[CrossRef]

Le Ru, E. C.

E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier: Oxford, UK, 2009).

Liu, N.

N. Liu, M. Mesch, T.s Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Luo, C.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef]

Luo, X.

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Menzel, D.

K. Watanabe, D. Menzel, N. Nilius, and H. J. Freund, “Photochemistry on metal nanoparticles,” Chem. Rev. 106, 4301–4320 (2006).
[CrossRef]

Mesch, M.

N. Liu, M. Mesch, T.s Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Mohamed, M.A.

C.L. Holloway, M.A. Mohamed, E.F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electro-magn. Compat. 47, 853–865 (2005).
[CrossRef]

Moskovits, M.

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering, Physics and Applications (Eds., Springer: Berlin–Heidelberg–New York, 2006).
[CrossRef]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011).
[CrossRef]

Narayanaswamy, A.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef]

Nilius, N.

K. Watanabe, D. Menzel, N. Nilius, and H. J. Freund, “Photochemistry on metal nanoparticles,” Chem. Rev. 106, 4301–4320 (2006).
[CrossRef]

Noh, H.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Pearce, J. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
[CrossRef]

Pu, M.

Rothenhausler, B.

B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).

Sarychev, A. K.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano. Lett. 4, 153–158 (2004).
[CrossRef]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Semchenko, I.

A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach Science: Amsterdam, The Netherlands, 2001).

Serdyukov, A.

A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach Science: Amsterdam, The Netherlands, 2001).

Shalaev, V. M.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano. Lett. 4, 153–158 (2004).
[CrossRef]

Sigalas, M. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

Sihvola, A.

A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach Science: Amsterdam, The Netherlands, 2001).

Simovski, C.

M. Albooyeh and C. Simovski, “Substrate-induced bianisotropy in plasmonic grids,” J. Opt. 13, 105102 (2011).
[CrossRef]

Simovski, C. R.

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
[CrossRef]

Soukoulis, C. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Stone, A. D.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011).
[CrossRef]

Tretyakov, S.

A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach Science: Amsterdam, The Netherlands, 2001).

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Vardaxoglu, J. C.

J. C. Vardaxoglu, Frequency Selective Surfaces: Theory and Design (Research Studies Press, Ltd.: Taunton, UK, 1997).

Veronis, G.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Vinoy, K. J.

K. J. Vinoy and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization (Kluwer: Boston, USA, 1999).

Wan, W. J.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Wang, C.

Wang, M.

Watanabe, K.

K. Watanabe, D. Menzel, N. Nilius, and H. J. Freund, “Photochemistry on metal nanoparticles,” Chem. Rev. 106, 4301–4320 (2006).
[CrossRef]

Wei, A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano. Lett. 4, 153–158 (2004).
[CrossRef]

Weiss, T.s

N. Liu, M. Mesch, T.s Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Wronski, C. R.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Yu, Z.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011).
[CrossRef]

Zhao, Z.

ACS Nano

Y. Chu, Mohamad G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4, 2804–2810 (2010).
[CrossRef]

Adv. Mat.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Chem. Rev.

K. Watanabe, D. Menzel, N. Nilius, and H. J. Freund, “Photochemistry on metal nanoparticles,” Chem. Rev. 106, 4301–4320 (2006).
[CrossRef]

IEEE Trans. Electro-magn. Compat.

C.L. Holloway, M.A. Mohamed, E.F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electro-magn. Compat. 47, 853–865 (2005).
[CrossRef]

J. Appl. Phys.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Opt.

M. Albooyeh and C. Simovski, “Substrate-induced bianisotropy in plasmonic grids,” J. Opt. 13, 105102 (2011).
[CrossRef]

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
[CrossRef]

Nano Lett.

N. Liu, M. Mesch, T.s Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Nano. Lett.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano. Lett. 4, 153–158 (2004).
[CrossRef]

Nat. Photonics

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Nature

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).

Nature Mat.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

Phys. Rev. Lett.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef]

Phys.Rev. B

V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys.Rev. B 75, 024303 (2007).
[CrossRef]

Science

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Semicond. Sci. Technol.

K. Emery, “Characterizing thermophotovoltaic cells,” Semicond. Sci. Technol. 18, S228–S231 (2003).
[CrossRef]

Other

K. J. Vinoy and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization (Kluwer: Boston, USA, 1999).

E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier: Oxford, UK, 2009).

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering, Physics and Applications (Eds., Springer: Berlin–Heidelberg–New York, 2006).
[CrossRef]

A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach Science: Amsterdam, The Netherlands, 2001).

J. C. Vardaxoglu, Frequency Selective Surfaces: Theory and Design (Research Studies Press, Ltd.: Taunton, UK, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) – Horizontally isotropic scatterers with both electric and magnetic responses (e.g. magneto-dielectric spheres experiencing the magnetic and electric Mie resonances at microwaves). (b) – Horizontally isotropic grid of plasmonic particles located over a semiconductor substrate.

Fig. 2
Fig. 2

(a) – Color map of the local field amplitude normalized to that of the incident wave at the wavelength of maximal power absorption. (b) – Coefficients of reflection (amplitude), transmission (amplitude), and absorption (power) of the normally incident plane wave in the proposed plasmonic structure (HFSS vs CST).

Fig. 3
Fig. 3

(a) – Color map of the maximum power absorption as a function of particle diameters D and gap thickness s. Notice: Maximum absorption is 99.9% for s = 6nm and D = 75nm. (b) – Black line: the square power of the local electric field amplitude normalized to that of the incident wave versus wavelength for s = 4 nm. The local field is calculated at the center of the gap. Blue line with circles: the absorbtion coefficient in percent as a function of s calculated at wavelengths λMPA(s). (c) – Color map of λMPA variations as a function of particle diameters D and gap thickness s.

Tables (2)

Tables Icon

Table 1 Dimensions of the PPA and characteristic parameters of materials at the wavelength λMPA=361.9 nm.

Tables Icon

Table 2 Desired and achieved surface susceptibilities of the metafilm with s = 4 nm at the wavelength λMPA =361.9 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

𝒫 x = α x x e e < E x > , y = α y y m m < H y > .
R = X 1 + X + Y 1 + Y , T = 1 X 1 + X Y 1 + Y .
α x x e e = 2 i ε 0 k 0 , ( a ) , α y y m m = 2 i μ 0 k 0 . ( b )
𝒫 x = α x x e e < E x > + α x y e m < H y > , y = α y x m e < E x > .
α x x e e = i 4 ε 0 k 0 1 R 2 n T 2 ( 1 + R + T ) 2 , α x y e m = i 2 ε 0 μ 0 k 0 1 + R T 1 + R + T
α x x e e = 4 i ε 0 k 0 , α x y e m = 2 i ε 0 μ 0 k 0 .

Metrics