Abstract

We propose and experimentally demonstrate a novel scheme to generate optical frequency-locked multi-channel multi-carriers (MCMC), using a recirculating frequency shifter (RFS) loop based on multi-wavelength frequency shifting single side band (MWFS-SSB) modulation. In this scheme, optical subcarriers with multiple wavelengths can be generated each round. Furthermore, the generated MCMC are frequency- and phase-locked within each channel, and therefore can be effectively used for WDM superchannel. Dual-wavelength frequency shifting SSB modulation is carried out with dual-wavelength optical seed source in our experimental demonstration. Using this scheme, we successfully generate dual-channel multi-carriers, and one channel has 28 subcarriers while the other has 29 ones with 25-GHz subcarrier spacing. We also experimentally demonstrate that this kind of source can be used to carry 50-Gb/s optical polarization-division-multiplexing quadrature phase shift keying (PDM-QPSK) signal.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8Tbit/s,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(OFC/NFOEC), San Diego, CA (Mar. 2010).
  2. X. Liu, S. Chandrasekhar, B. Zhu, and D. Peckham, “Efficient digital coherent detection of a 1.2-Tb/s 24-carrier no-guard-interval CO-OFDM signal by simultaneously detecting multiple carriers per sampling,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(OFC/NFOEC), San Diego, CA (Mar. 2010).
  3. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  4. J. Yu, Z. Dong, J. Zhang, X. Xiao, H.-C. Chien, and N. Chi, “Generation of coherent and frequency-locked multi-carriers using cascaded phase modulators for 10Tb/s optical transmission system,” J. Lightwave Technol. 30(4), 458–465 (2012).
    [CrossRef]
  5. P. Coppin and T. G. Hodgkison, “Novel optical frequency synthesis using optical feedback,” Electron. Lett. 26(1), 1155–1157 (1990).
    [CrossRef]
  6. K. P. Ho and J. M. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photon. Technol. Lett. 5(6), 721–725 (1993).
    [CrossRef]
  7. A. Lowery, “Performance predictions and topology improvements for optical serrodyne comb generators,” J. Lightwave Technol. 23(8), 2371–2379 (2005).
    [CrossRef]
  8. S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
    [CrossRef]
  9. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [CrossRef]
  10. J. Zhang, N. Chi, J. Yu, Y. Shao, J. Zhu, B. Huang, and L. Tao, “Generation of coherent and frequency-lock multi-carriers using cascaded phase modulators and recirculating frequency shifter for Tb/s optical communication,” Opt. Express 19(14), 12891–12902 (2011).
    [CrossRef] [PubMed]
  11. J. Zhang, J. Yu, Z. Dong, Y. Shao, and N. Chi, “Generation of full C-band coherent and frequency-lock multi-carriers by using recirculating frequency shifter loops based on phase modulator with external injection,” Opt. Express 19(27), 26370–26381 (2011).
    [CrossRef] [PubMed]
  12. J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, Y. Wang, and X. Li, “Improved multi-carriers generation by using multi-frequency shifting recirculating Loop,” IEEE Photon. Technol. Lett. (to be published).
  13. J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on re-circulating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18(17), 17597–17609 (2010).
    [CrossRef] [PubMed]
  14. F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol. 29(8), 1085–1091 (2011).
    [CrossRef]

2012 (1)

2011 (3)

2010 (1)

2009 (1)

2005 (1)

2003 (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

1999 (1)

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

1993 (1)

K. P. Ho and J. M. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photon. Technol. Lett. 5(6), 721–725 (1993).
[CrossRef]

1990 (1)

P. Coppin and T. G. Hodgkison, “Novel optical frequency synthesis using optical feedback,” Electron. Lett. 26(1), 1155–1157 (1990).
[CrossRef]

Bennett, S.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

Burr, E.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

Cai, B.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

Chen, S.

Chi, N.

Chien, H.-C.

Coppin, P.

P. Coppin and T. G. Hodgkison, “Novel optical frequency synthesis using optical feedback,” Electron. Lett. 26(1), 1155–1157 (1990).
[CrossRef]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Dong, Z.

Gough, O.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

Ho, K. P.

K. P. Ho and J. M. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photon. Technol. Lett. 5(6), 721–725 (1993).
[CrossRef]

Hodgkison, T. G.

P. Coppin and T. G. Hodgkison, “Novel optical frequency synthesis using optical feedback,” Electron. Lett. 26(1), 1155–1157 (1990).
[CrossRef]

Huang, B.

Kahn, J. M.

K. P. Ho and J. M. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photon. Technol. Lett. 5(6), 721–725 (1993).
[CrossRef]

Li, J.

Li, X.

J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on re-circulating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18(17), 17597–17609 (2010).
[CrossRef] [PubMed]

J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, Y. Wang, and X. Li, “Improved multi-carriers generation by using multi-frequency shifting recirculating Loop,” IEEE Photon. Technol. Lett. (to be published).

Lowery, A.

Ma, Y.

Seeds, A. J.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

Shao, Y.

Shieh, W.

Tang, Y.

Tao, L.

J. Zhang, N. Chi, J. Yu, Y. Shao, J. Zhu, B. Huang, and L. Tao, “Generation of coherent and frequency-lock multi-carriers using cascaded phase modulators and recirculating frequency shifter for Tb/s optical communication,” Opt. Express 19(14), 12891–12902 (2011).
[CrossRef] [PubMed]

J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, Y. Wang, and X. Li, “Improved multi-carriers generation by using multi-frequency shifting recirculating Loop,” IEEE Photon. Technol. Lett. (to be published).

Tian, F.

Wang, Y.

J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, Y. Wang, and X. Li, “Improved multi-carriers generation by using multi-frequency shifting recirculating Loop,” IEEE Photon. Technol. Lett. (to be published).

Xi, L.

Xiao, X.

Yang, Q.

Ye, J.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Yu, J.

Zhang, J.

Zhang, X.

Zhu, J.

Electron. Lett. (1)

P. Coppin and T. G. Hodgkison, “Novel optical frequency synthesis using optical feedback,” Electron. Lett. 26(1), 1155–1157 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. P. Ho and J. M. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photon. Technol. Lett. 5(6), 721–725 (1993).
[CrossRef]

J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, Y. Wang, and X. Li, “Improved multi-carriers generation by using multi-frequency shifting recirculating Loop,” IEEE Photon. Technol. Lett. (to be published).

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (4)

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Other (2)

D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8Tbit/s,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(OFC/NFOEC), San Diego, CA (Mar. 2010).

X. Liu, S. Chandrasekhar, B. Zhu, and D. Peckham, “Efficient digital coherent detection of a 1.2-Tb/s 24-carrier no-guard-interval CO-OFDM signal by simultaneously detecting multiple carriers per sampling,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(OFC/NFOEC), San Diego, CA (Mar. 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The principle of MCMC generation using RFS loop based on MWFS-SSB modulation. Inset (a) shows the schematic diagram of output optical spectra. OC: optical coupler, I/Q Mod: I/Q modulator, RFS: radio frequency signal, PS: phase shifter, EDFA: Erbium-doped fiber amplifier, PC: polarization controller, WSS: wavelength selective switch, OSA: optical spectrum analyzer, chN: channel N.

Fig. 2
Fig. 2

The experimental setup for the MCMC generation, 50-Gb/s PDM-QPSK modulation and coherent detection based on our proposed MWFS-SSB scheme. Inset (a) shows the detailed structure of the MCMC source. ECL: external cavity laser, OC: optical coupler, I/Q Mod: I/Q modulator, EDFA: Erbium-doped fiber amplifier, PC: polarization controller, WSS: wavelength selective switch, PS: phase shifter, TOF: tunable optical filter, Pol. Mux: polarization multiplexer, DL: delay line, ATT: attenuator, PBS: polarization beam splitter, PBC: polarization beam combiner, LO: local oscillator, PD: photo detector, ADC: analog-to-digital converter.

Fig. 3
Fig. 3

The optical spectra after MWFS-SSB modulation (a) when the loop is open (at the 0.1-nm resolution) and (b) when both ECLs are turned off (at the 0.02-nm resolution), respectively.

Fig. 4
Fig. 4

The optical spectra for the case of (a) only Channel 1, (b) only Channel 2 as well as (c) both Channel 1 and Channel 2, respectively (all at the 0.02-nm resolution).

Fig. 5
Fig. 5

The measured BER versus OSNR for 50-Gb/s optical PMD-QPSK signal in the case of the single-laser source and WDM multi-carrier channel, respectively. Inset (a) and (b) show the constellations for the single-laser source and WDM multi-carrier channel, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E c = n=0 N1 E o exp[j2π( f o +n f s )t]
E MWFS = n=0 N1 E o exp[j2π( f o +n f s +Δ f )t]
E out_M (t)= m=0 M n=0 N1 E o exp[j2π( f o +n f s +mΔ f )t]

Metrics