Abstract

We experimentally determined the three-dimensional temperature distribution and modification mechanism in a soda-lime-silicate glass under irradiation of ultrafast laser pulses at high repetition rates by analyzing the relationship between the morphology of the modification and ambient temperature. In contrast to previous studies, we consider the temperature dependence of thermophysical properties and the nonlinear effect on the absorbed energy distribution along the beam propagation axis in carrying out analyses. The optical absorptivity evaluated with the temperature distribution is approximately 80% and at most 3.5% smaller than that evaluated by the transmission loss measurement. The temperature distribution and the strain distribution indicate that visco-elastic deformation and material flow play important roles in the laser-induced modification inside a glass.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  2. S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]
  3. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [CrossRef] [PubMed]
  4. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express 19(11), 10714–10727 (2011).
    [CrossRef] [PubMed]
  5. S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008).
    [CrossRef]
  6. S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
    [CrossRef] [PubMed]
  7. M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, “Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1001–1005 (2010).
    [CrossRef]
  8. A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic, 1993).
  9. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
    [CrossRef]
  10. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
    [CrossRef]
  11. A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
    [CrossRef]
  12. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
    [CrossRef]
  13. A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in materials tailored with photosensitive agents,” Opt. Mater. Express 1(5), 866–882 (2011).
    [CrossRef]
  14. Glass data sheet from Schott.
  15. M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
    [CrossRef] [PubMed]
  16. H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, “Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model,” Int. J. Thermophys. 19(3), 941–949 (1998).
    [CrossRef]
  17. H. Ohta, H. Shibata, A. Suzuki, and Y. Waseda, “Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature,” Rev. Sci. Instrum. 72(3), 1899–1903 (2001).
    [CrossRef]
  18. J. Huang and P. K. Gupta, “Temperature-dependence of the isostructural heat-capacity of a soda lime silicate glass,” J. Non-Cryst Sol. 139, 239–247 (1992).
  19. H. Shibata, A. Suzuki, and H. Ohta, “Measurement of thermal transport properties for molten silicate glasses at high temperatures by means of a novel laser flash technique,” Mater. Trans. 46(8), 1877–1881 (2005).
    [CrossRef]
  20. K. I. Popov, C. McElcheran, K. Briggs, S. Mack, and L. Ramunno, “Morphology of femtosecond laser modification of bulk dielectrics,” Opt. Express 19(1), 271–282 (2011).
    [CrossRef] [PubMed]
  21. M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42(16), 3009–3017 (2003).
    [CrossRef] [PubMed]

2011 (4)

2010 (3)

S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[CrossRef] [PubMed]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, “Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1001–1005 (2010).
[CrossRef]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

2008 (4)

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008).
[CrossRef]

S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

2005 (3)

S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

H. Shibata, A. Suzuki, and H. Ohta, “Measurement of thermal transport properties for molten silicate glasses at high temperatures by means of a novel laser flash technique,” Mater. Trans. 46(8), 1877–1881 (2005).
[CrossRef]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

2003 (2)

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42(16), 3009–3017 (2003).
[CrossRef] [PubMed]

2001 (1)

H. Ohta, H. Shibata, A. Suzuki, and Y. Waseda, “Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature,” Rev. Sci. Instrum. 72(3), 1899–1903 (2001).
[CrossRef]

1998 (1)

H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, “Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model,” Int. J. Thermophys. 19(3), 941–949 (1998).
[CrossRef]

1992 (1)

J. Huang and P. K. Gupta, “Temperature-dependence of the isostructural heat-capacity of a soda lime silicate glass,” J. Non-Cryst Sol. 139, 239–247 (1992).

Arai, A.

Audouard, E.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Bovatsek, J.

Briggs, K.

Bulgakova, N. M.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Burakov, I. M.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Canioni, L.

Chen, W. J.

Cvecek, K.

Eaton, S. M.

Fricke, J.

H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, “Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model,” Int. J. Thermophys. 19(3), 941–949 (1998).
[CrossRef]

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

Gupta, P. K.

J. Huang and P. K. Gupta, “Temperature-dependence of the isostructural heat-capacity of a soda lime silicate glass,” J. Non-Cryst Sol. 139, 239–247 (1992).

Hahn, O.

H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, “Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model,” Int. J. Thermophys. 19(3), 941–949 (1998).
[CrossRef]

Hautzinger, G.

H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, “Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model,” Int. J. Thermophys. 19(3), 941–949 (1998).
[CrossRef]

Herman, P. R.

Hertel, I. V.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Hirao, K.

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
[CrossRef] [PubMed]

S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[CrossRef] [PubMed]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, “Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1001–1005 (2010).
[CrossRef]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008).
[CrossRef]

Ho, S.

Hofmann, R.

H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, “Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model,” Int. J. Thermophys. 19(3), 941–949 (1998).
[CrossRef]

Huang, J.

J. Huang and P. K. Gupta, “Temperature-dependence of the isostructural heat-capacity of a soda lime silicate glass,” J. Non-Cryst Sol. 139, 239–247 (1992).

Husakou, A.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Jiang, N.

S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[CrossRef] [PubMed]

Kanehira, S.

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
[CrossRef] [PubMed]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, “Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1001–1005 (2010).
[CrossRef]

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008).
[CrossRef]

Li, J. Z.

Mack, S.

Mazur, E.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

McElcheran, C.

Mehling, H.

H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, “Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model,” Int. J. Thermophys. 19(3), 941–949 (1998).
[CrossRef]

Mermillod-Blondin, A.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Meshcheryakov, Y. P.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Miura, K.

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
[CrossRef] [PubMed]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[CrossRef] [PubMed]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, “Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1001–1005 (2010).
[CrossRef]

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

Miyamoto, I.

Nakaya, T.

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, “Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1001–1005 (2010).
[CrossRef]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Ng, M. L.

Nilsson, O.

H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, “Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model,” Int. J. Thermophys. 19(3), 941–949 (1998).
[CrossRef]

Nishi, M.

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
[CrossRef] [PubMed]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, “Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1001–1005 (2010).
[CrossRef]

S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[CrossRef] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Ohnishi, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Ohta, H.

H. Shibata, A. Suzuki, and H. Ohta, “Measurement of thermal transport properties for molten silicate glasses at high temperatures by means of a novel laser flash technique,” Mater. Trans. 46(8), 1877–1881 (2005).
[CrossRef]

H. Ohta, H. Shibata, A. Suzuki, and Y. Waseda, “Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature,” Rev. Sci. Instrum. 72(3), 1899–1903 (2001).
[CrossRef]

Oldenbourg, R.

Paltauf, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Papon, G.

Petit, Y.

Popov, K. I.

Qiu, J. R.

S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[CrossRef] [PubMed]

Ramunno, L.

Richardson, M.

Rosenfeld, A.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Royon, A.

Sakakura, M.

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
[CrossRef] [PubMed]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, “Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1001–1005 (2010).
[CrossRef]

S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[CrossRef] [PubMed]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

Schmidt, M.

Shah, L.

Shibata, H.

H. Shibata, A. Suzuki, and H. Ohta, “Measurement of thermal transport properties for molten silicate glasses at high temperatures by means of a novel laser flash technique,” Mater. Trans. 46(8), 1877–1881 (2005).
[CrossRef]

H. Ohta, H. Shibata, A. Suzuki, and Y. Waseda, “Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature,” Rev. Sci. Instrum. 72(3), 1899–1903 (2001).
[CrossRef]

Shimizu, M.

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
[CrossRef] [PubMed]

S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[CrossRef] [PubMed]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, “Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1001–1005 (2010).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

Shimotsuma, Y.

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
[CrossRef] [PubMed]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, “Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1001–1005 (2010).
[CrossRef]

S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

Shribak, M.

Stoian, R.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Suzuki, A.

H. Shibata, A. Suzuki, and H. Ohta, “Measurement of thermal transport properties for molten silicate glasses at high temperatures by means of a novel laser flash technique,” Mater. Trans. 46(8), 1877–1881 (2005).
[CrossRef]

H. Ohta, H. Shibata, A. Suzuki, and Y. Waseda, “Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature,” Rev. Sci. Instrum. 72(3), 1899–1903 (2001).
[CrossRef]

Tanabe, S.

S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Waseda, Y.

H. Ohta, H. Shibata, A. Suzuki, and Y. Waseda, “Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature,” Rev. Sci. Instrum. 72(3), 1899–1903 (2001).
[CrossRef]

Yoshino, F.

Zhang, H.

Zhang, H. B.

Zhou, S. F.

S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, “Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1001–1005 (2010).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

Int. J. Thermophys. (1)

H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, “Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model,” Int. J. Thermophys. 19(3), 941–949 (1998).
[CrossRef]

J. Am. Chem. Soc. (1)

S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

J. Non-Cryst Sol. (1)

J. Huang and P. K. Gupta, “Temperature-dependence of the isostructural heat-capacity of a soda lime silicate glass,” J. Non-Cryst Sol. 139, 239–247 (1992).

Mater. Trans. (1)

H. Shibata, A. Suzuki, and H. Ohta, “Measurement of thermal transport properties for molten silicate glasses at high temperatures by means of a novel laser flash technique,” Mater. Trans. 46(8), 1877–1881 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

H. Ohta, H. Shibata, A. Suzuki, and Y. Waseda, “Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature,” Rev. Sci. Instrum. 72(3), 1899–1903 (2001).
[CrossRef]

Other (2)

A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic, 1993).

Glass data sheet from Schott.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a)–(c) Optical microscope images of the modifications induced at various ambient temperatures Ta. The broken arrow indicates the propagation direction of the excitation laser beam. (d)–(f) Schematic explanation of the size change of the outer boundary. Tout is the temperature threshold of the modification. (g) Ambient temperature dependences of Rr and Rz at various excitation pulse energies.

Fig. 2
Fig. 2

(a) Heat source in Cartesian coordinates. (b) Specific heat for the simulation. (c) Fitted results for the radial direction. (d) Fitted results for the beam propagation direction. The curves in (c) and (d) are the thermal energy distribution under room temperature irradiation, which were calculated by Eq. (6) with the determined fitting parameter. The plots show the experimental data corresponding to the right-hand side of Eq. (7) with Tout determined.

Fig. 3
Fig. 3

(a) Optical absorptivity determined by the analysis and transmission loss measurement. (b) Comparison between the determined characteristic temperature (Tout) and other important transformation temperatures. The gray band indicates the temperature range where the estimated percentage of stress relaxation after 1-s laser irradiation changed from 1% to 99%.

Fig. 4
Fig. 4

(a) Optical microscope image and (b)–(d) three-dimensional temperature distributions under a pulse energy of 2.0 μJ at an ambient temperature of 298 K. (b) Just after final pulse irradiation. (c) 1 μs after final pulse irradiation. (d) 4 μs after final pulse irradiation. (e) Residual strain distribution after laser irradiation (f) Residual strain distribution after heat treatment. In (e) and (f), the brightness indicates the relative intensity of birefringence. The colors express the direction of the slow axis of the index ellipsoid. The direction corresponds to that in the inset of semicircular shape. The scale for each figure is identical to that in (c) and (d).

Tables (1)

Tables Icon

Table 1 Parameters Determined by Fitting Rz, Rr vs. Ta by Eq. (7)a

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

J( t,r )=λ( T( t,r ) )T( t,r ),
q( t,r )=ρ T a T( t,r ) C p (T) dT,
q( t,r ) t =( Dq( t,r ) )+ q laser ( t,r ) t ,
q laser ( t,r ) t =δ( tnΔ t L ) q 0 exp[ r 2 ( w r /2 ) z 2 ( l z /2 ) ],
Δ q 1 ( t',r )= q 0 ( w r /2 ) 2 ( w r /2 ) 2 +4Dt' [ ( l z /2) 2 ( l z /2 ) 2 +4Dt' ] 1/2 exp[ r 2 ( w r /2 ) 2 +4Dt' z 2 ( l z /2 ) 2 +4Dt' ],
q N ( t,r )= n=0 N1 Δ q 1 ( tnΔ t L ,r ) ,
q N ( t ex , r boundary )= T a T out C p ( T ) dT,
Q a = π 3/2 q 0 ( w r /2) 2 ( l z /2).

Metrics