Abstract

A convertible lenticular liquid crystal (LC) lens architecture is demonstrated using an index-matched planarization layer on a periodically undulated electrode for the homogeneous alignment of an LC. It is found that the in-plane component of the electric field by the undulated electrode plays a primary role in the flat-to-lens effect while the out-of-plane component contributes to the anchoring enhancement of the LC molecules in the surface layer. Our LC device having an index-matched planarization layer on the undulated electrode is capable of achieving the electrical tunability from the flat surface to the lenticular lens suitable for 2D/3D convertible displays.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. deGennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University Press, New York, 1993).
  2. H. J. Tiziani, M. Wegner, and D. Steudle, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng. 39(1), 32–39 (2000).
    [CrossRef]
  3. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29(23), 2734–2736 (2004).
    [CrossRef] [PubMed]
  4. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
    [CrossRef]
  5. H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [CrossRef]
  6. B. Wang, M. Ye, and S. Sato, “Numerical study of a lens-shaped liquid crystal cell,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413(1), 423–433 (2004).
    [CrossRef]
  7. W. Choi, D.-W. Kim, and S.-D. Lee, “Liquid crystal lens array with high fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 508(1), 397–402 (2009).
    [CrossRef]
  8. Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, “An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” in Proceedings of SID Symp. Dig. (Gonzalez convention center, San Antonio, Texas, 2009), 111–113.
  9. M. Sluijter, A. Herzog, D. K. G. de Boer, M. P. C. M. Krijn, and H. P. Urbach, “Ray-tracing simulations of liquid-crystal gradient-index lenses for three-dimensional displays,” J. Opt. Soc. Am. B 26(11), 2035–2043 (2009).
    [CrossRef]
  10. J.-H. Na, S. C. Park, S.-U. Kim, and S.-D. Lee, “Tunable lenticular lens array using liquid crystal on periodically undulated electrodes for autostereoscopic 2D/3D convertible displays,” in Proceedings of SID Symp. Dig. (Los Angeles convention center, Los Angeles, Calif., 2011), 1584–1586.
  11. Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
    [CrossRef]
  12. Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
    [CrossRef]
  13. Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
    [CrossRef]
  14. J. Lee, S.-W. Suh, K. Lee, and S.-D. Lee, “Calculation of a surface-induced polar effect in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(1), 923–926 (1994).
    [CrossRef] [PubMed]
  15. Data sheet of ZLI-4151–000 provided by Merck Ltd.
  16. G. Barbero, L. R. Evangelista, and N. V. Madhusudana, “Effect of surface electric field on the anchoring of nematic liquid crystals,” Eur. Phys. J. B 1(3), 327–331 (1998).
    [CrossRef]
  17. J.-H. Na, H. Pae, J. Kim, C.-J. Yu, and S.-D. Lee, “A mean-field photoreaction model for the pretilt generation of a liquid crystal on photopolymer layers upon ultraviolet exposure,” Jpn. J. Appl. Phys. 50, 034101 (2011).
    [CrossRef]

2011

J.-H. Na, H. Pae, J. Kim, C.-J. Yu, and S.-D. Lee, “A mean-field photoreaction model for the pretilt generation of a liquid crystal on photopolymer layers upon ultraviolet exposure,” Jpn. J. Appl. Phys. 50, 034101 (2011).
[CrossRef]

2009

W. Choi, D.-W. Kim, and S.-D. Lee, “Liquid crystal lens array with high fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 508(1), 397–402 (2009).
[CrossRef]

M. Sluijter, A. Herzog, D. K. G. de Boer, M. P. C. M. Krijn, and H. P. Urbach, “Ray-tracing simulations of liquid-crystal gradient-index lenses for three-dimensional displays,” J. Opt. Soc. Am. B 26(11), 2035–2043 (2009).
[CrossRef]

2007

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

2005

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[CrossRef]

2004

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29(23), 2734–2736 (2004).
[CrossRef] [PubMed]

H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Numerical study of a lens-shaped liquid crystal cell,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413(1), 423–433 (2004).
[CrossRef]

2003

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[CrossRef]

2002

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

2000

H. J. Tiziani, M. Wegner, and D. Steudle, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng. 39(1), 32–39 (2000).
[CrossRef]

1998

G. Barbero, L. R. Evangelista, and N. V. Madhusudana, “Effect of surface electric field on the anchoring of nematic liquid crystals,” Eur. Phys. J. B 1(3), 327–331 (1998).
[CrossRef]

1994

J. Lee, S.-W. Suh, K. Lee, and S.-D. Lee, “Calculation of a surface-induced polar effect in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(1), 923–926 (1994).
[CrossRef] [PubMed]

Barbero, G.

G. Barbero, L. R. Evangelista, and N. V. Madhusudana, “Effect of surface electric field on the anchoring of nematic liquid crystals,” Eur. Phys. J. B 1(3), 327–331 (1998).
[CrossRef]

Choi, W.

W. Choi, D.-W. Kim, and S.-D. Lee, “Liquid crystal lens array with high fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 508(1), 397–402 (2009).
[CrossRef]

Choi, W.-K.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[CrossRef]

Choi, Y.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[CrossRef]

de Boer, D. K. G.

Evangelista, L. R.

G. Barbero, L. R. Evangelista, and N. V. Madhusudana, “Effect of surface electric field on the anchoring of nematic liquid crystals,” Eur. Phys. J. B 1(3), 327–331 (1998).
[CrossRef]

Fan, Y.-H.

H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Fan-Chiang, K.-H.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[CrossRef]

Gauza, S.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[CrossRef]

H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Herzog, A.

Hong, J.

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Kim, D.-W.

W. Choi, D.-W. Kim, and S.-D. Lee, “Liquid crystal lens array with high fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 508(1), 397–402 (2009).
[CrossRef]

Kim, H.-R.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29(23), 2734–2736 (2004).
[CrossRef] [PubMed]

Kim, J.

J.-H. Na, H. Pae, J. Kim, C.-J. Yu, and S.-D. Lee, “A mean-field photoreaction model for the pretilt generation of a liquid crystal on photopolymer layers upon ultraviolet exposure,” Jpn. J. Appl. Phys. 50, 034101 (2011).
[CrossRef]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29(23), 2734–2736 (2004).
[CrossRef] [PubMed]

Kim, J.-H.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[CrossRef]

Kim, Y.

Krijn, M. P. C. M.

Lee, B.

Lee, J.

J. Lee, S.-W. Suh, K. Lee, and S.-D. Lee, “Calculation of a surface-induced polar effect in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(1), 923–926 (1994).
[CrossRef] [PubMed]

Lee, K.

J. Lee, S.-W. Suh, K. Lee, and S.-D. Lee, “Calculation of a surface-induced polar effect in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(1), 923–926 (1994).
[CrossRef] [PubMed]

Lee, K.-H.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Lee, S.-D.

J.-H. Na, H. Pae, J. Kim, C.-J. Yu, and S.-D. Lee, “A mean-field photoreaction model for the pretilt generation of a liquid crystal on photopolymer layers upon ultraviolet exposure,” Jpn. J. Appl. Phys. 50, 034101 (2011).
[CrossRef]

W. Choi, D.-W. Kim, and S.-D. Lee, “Liquid crystal lens array with high fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 508(1), 397–402 (2009).
[CrossRef]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29(23), 2734–2736 (2004).
[CrossRef] [PubMed]

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[CrossRef]

J. Lee, S.-W. Suh, K. Lee, and S.-D. Lee, “Calculation of a surface-induced polar effect in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(1), 923–926 (1994).
[CrossRef] [PubMed]

Lee, Y.-M.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Lin, Y.-H.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[CrossRef]

Madhusudana, N. V.

G. Barbero, L. R. Evangelista, and N. V. Madhusudana, “Effect of surface electric field on the anchoring of nematic liquid crystals,” Eur. Phys. J. B 1(3), 327–331 (1998).
[CrossRef]

Na, J.-H.

J.-H. Na, H. Pae, J. Kim, C.-J. Yu, and S.-D. Lee, “A mean-field photoreaction model for the pretilt generation of a liquid crystal on photopolymer layers upon ultraviolet exposure,” Jpn. J. Appl. Phys. 50, 034101 (2011).
[CrossRef]

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Pae, H.

J.-H. Na, H. Pae, J. Kim, C.-J. Yu, and S.-D. Lee, “A mean-field photoreaction model for the pretilt generation of a liquid crystal on photopolymer layers upon ultraviolet exposure,” Jpn. J. Appl. Phys. 50, 034101 (2011).
[CrossRef]

Park, J.-H.

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29(23), 2734–2736 (2004).
[CrossRef] [PubMed]

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[CrossRef]

Ren, H.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[CrossRef]

H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Sato, S.

B. Wang, M. Ye, and S. Sato, “Numerical study of a lens-shaped liquid crystal cell,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413(1), 423–433 (2004).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Sluijter, M.

Steudle, D.

H. J. Tiziani, M. Wegner, and D. Steudle, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng. 39(1), 32–39 (2000).
[CrossRef]

Suh, S.-W.

J. Lee, S.-W. Suh, K. Lee, and S.-D. Lee, “Calculation of a surface-induced polar effect in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(1), 923–926 (1994).
[CrossRef] [PubMed]

Tiziani, H. J.

H. J. Tiziani, M. Wegner, and D. Steudle, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng. 39(1), 32–39 (2000).
[CrossRef]

Urbach, H. P.

Wang, B.

B. Wang, M. Ye, and S. Sato, “Numerical study of a lens-shaped liquid crystal cell,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413(1), 423–433 (2004).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Wegner, M.

H. J. Tiziani, M. Wegner, and D. Steudle, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng. 39(1), 32–39 (2000).
[CrossRef]

Wu, S. T.

H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Wu, S.-T.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[CrossRef]

Ye, M.

B. Wang, M. Ye, and S. Sato, “Numerical study of a lens-shaped liquid crystal cell,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413(1), 423–433 (2004).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Yu, C.-J.

J.-H. Na, H. Pae, J. Kim, C.-J. Yu, and S.-D. Lee, “A mean-field photoreaction model for the pretilt generation of a liquid crystal on photopolymer layers upon ultraviolet exposure,” Jpn. J. Appl. Phys. 50, 034101 (2011).
[CrossRef]

Zhu, X.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[CrossRef]

Appl. Phys. Lett.

H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Eur. Phys. J. B

G. Barbero, L. R. Evangelista, and N. V. Madhusudana, “Effect of surface electric field on the anchoring of nematic liquid crystals,” Eur. Phys. J. B 1(3), 327–331 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[CrossRef]

J.-H. Na, H. Pae, J. Kim, C.-J. Yu, and S.-D. Lee, “A mean-field photoreaction model for the pretilt generation of a liquid crystal on photopolymer layers upon ultraviolet exposure,” Jpn. J. Appl. Phys. 50, 034101 (2011).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

B. Wang, M. Ye, and S. Sato, “Numerical study of a lens-shaped liquid crystal cell,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413(1), 423–433 (2004).
[CrossRef]

W. Choi, D.-W. Kim, and S.-D. Lee, “Liquid crystal lens array with high fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 508(1), 397–402 (2009).
[CrossRef]

Opt. Eng.

H. J. Tiziani, M. Wegner, and D. Steudle, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng. 39(1), 32–39 (2000).
[CrossRef]

Opt. Lett.

Opt. Mater.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

J. Lee, S.-W. Suh, K. Lee, and S.-D. Lee, “Calculation of a surface-induced polar effect in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(1), 923–926 (1994).
[CrossRef] [PubMed]

Other

Data sheet of ZLI-4151–000 provided by Merck Ltd.

J.-H. Na, S. C. Park, S.-U. Kim, and S.-D. Lee, “Tunable lenticular lens array using liquid crystal on periodically undulated electrodes for autostereoscopic 2D/3D convertible displays,” in Proceedings of SID Symp. Dig. (Los Angeles convention center, Los Angeles, Calif., 2011), 1584–1586.

P. G. deGennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University Press, New York, 1993).

Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, “An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” in Proceedings of SID Symp. Dig. (Gonzalez convention center, San Antonio, Texas, 2009), 111–113.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagrams showing a lenticular LC lens structure and the operational principles: (a) an LC cell with a undulated electrode in a planar configuration, giving the lenticular lens effect, and the optical states under (b) no applied voltage and (c) an applied voltage. Here, w and h denote the width and height of a lenticular cast, respectively. The cell gap is d.

Fig. 2
Fig. 2

(a) The SEM image of an undulated electrode, (b) the microscopic image of the substrate with the undulated electrode, and the insets in (a) and (b) correspond to the surface profiles before and after planarization. The microscopic textures of the lenticular LC cell observed when the crossed polarizers (A and P) make an angle of (c) 45° and (d) 0° with respect to the rubbing direction (R).

Fig. 3
Fig. 3

The tunable focusing capability of the lenticular LC lens: (a) the schematic diagram of the experiment using an array of circular patterns as an input image and the microscopic images of the circular patterns observed through the lenticular LC array at an applied voltage of (b) 0 V, (c) 5 V, and (d) 10 V, respectively. Each inset shows the CCD image of a collimated laser beam in the focal plane.

Fig. 4
Fig. 4

Numerical simulations of (a) the equipotential lines, (b) the spatial variations of the effective refractive index at 5 V and 10 V with Ey (solid lines) and without Ey (dashed lines), and (c) the focal length variations of our lenticular LC array with the applied voltage. The experimental results were represented the circles. The solid and dashed lines denote the calculated focal lengths with and without the contribution of Ey, respectively.

Metrics