Abstract

Damage tests are carried out at 1064nm to measure the laser resistance of TiO2/Al2O3and HfO2/Al2O3 antireflection coatings grown by atomic layer deposition (ALD). The damage results are determined by S-on-1 and R-on-1 tests. Interestingly, the damage performance of ALD coatings is similar to those grown by conventional e-beam evaporation process. A decline law of damage resistance under multiple irradiations is revealed. The influence of growth temperature on damage performance has been investigated. Result shows that the crystallization of TiO2 layer at higher temperature could lead to numerous absorption defects that reduce the laser-induced damage threshold (LIDT). In addition, it has been found that using inorganic compound instead of organic compound as precursors for ALD process maybe effectively prevent carbon impurities in films and will increase the LIDT obviously.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
    [CrossRef]
  2. M. Ritala and M. Leskelä, “Atomic layer epitaxy—a valuable tool for nanotechnology?” Nanotechnology 10(1), 19–24 (1999).
    [CrossRef]
  3. J. Maula, “Atomic layer deposition (ALD) for optical nanofabrication,” Proc. SPIE 7591, 75910S, 75910S-15 (2010).
    [CrossRef]
  4. O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1-2), 248–261 (2002).
    [CrossRef]
  5. S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 160–165 (2002).
    [CrossRef]
  6. P. Kumar, M. K. Wiedmann, C. H. Winter, and I. Avrutsky, “Optical properties of Al2O3 thin films grown by atomic layer deposition,” Appl. Opt. 48(28), 5407–5412 (2009).
    [CrossRef] [PubMed]
  7. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, “Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings,” Appl. Opt. 48(9), 1727–1732 (2009).
    [CrossRef] [PubMed]
  8. S. S. Kim, N. T. Gabriel, W. B. Song, and J. J. Talghader, “Encapsulation of low-reflective-index SiO2 nanorods by Al2O3 with atomic layer deposition,” Opt. Express 15(24), 16285–16291 (2007).
    [CrossRef] [PubMed]
  9. T. Pilvi, M. Ritala, M. Leskelä, M. Bischoff, U. Kaiser, and N. Kaiser, “Atomic layer deposition process with TiF4 as a precursor for depositing metal fluoride thin films,” Appl. Opt. 47(13), C271–C274 (2008).
    [CrossRef] [PubMed]
  10. N. B. Abaffy, P. Evans, G. Triani, and D. McCulloch, “Multilayer alumina and titania optical coatings prepared by atomic layer deposition,” Proc. SPIE 7041, 70419 (2008).
  11. Y. W. Wei, H. Liu, O. Y. Sheng, Z. C. Liu, S. L. Chen, and L. L. Yang, “Laser damage properties of TiO2/Al2O3 thin films grown by atomic layer deposition,” Appl. Opt. 50(24), 4720–4727 (2011).
    [CrossRef] [PubMed]
  12. S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
    [CrossRef]
  13. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
    [CrossRef]
  14. H. F. Jiao, T. Ding, and Q. Zhang, “Comparative study of Laser induce damage of HfO2/SiO2 and TiO2/SiO2 mirrors at 1064 nm,” Opt. Express 19(5), 4059–4066 (2011).
    [CrossRef] [PubMed]
  15. J. DiJon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in laser damage thin films,” Proc. SPIE 2966, 315–325 (1997).
    [CrossRef]
  16. S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: Absorption sources, initiation, growth, and mitigation,” Proc. SPIE7132, 71321J (2008).
  17. A. Ciapponi, P. Allenspacher, W. Riede, J. Herringer, and J. Arenberg, “S on 1 testing of AR and HR designs at 1064nm,” Proc. SPIE 7842, 78420J, 78420J-6 (2010).
    [CrossRef]
  18. L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 10(25), 1465–1474 (2002).
    [PubMed]
  19. A. Melninkaitis, D. Miksys, R. Grigonis, V. Sirutkaitis, D. Tumosa, G. Skokov, and D. Kuzma, “Multiple pulse laser-induced damage of antireflection coated lithium triborate,” Proc. SPIE 5963, 59631I, 59631I-8 (2005).
    [CrossRef]
  20. M. Mero, L. A. Emmert, and W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209, 713209-10 (2008).
    [CrossRef]
  21. J. W. Arenberg, “Life testing for laser optics: a first look,” Proc. SPIE 7504, 7504I (2009).
  22. J. W. Arenberg, W. Riede, A. Ciapponi, P. Allenspacher, and J. Herringer, “An empirical investigation of the laser survivability curve,” Proc. SPIE 7842, 78421B, 78421B-8 (2010).
    [CrossRef]

2011 (2)

2010 (3)

A. Ciapponi, P. Allenspacher, W. Riede, J. Herringer, and J. Arenberg, “S on 1 testing of AR and HR designs at 1064nm,” Proc. SPIE 7842, 78420J, 78420J-6 (2010).
[CrossRef]

J. Maula, “Atomic layer deposition (ALD) for optical nanofabrication,” Proc. SPIE 7591, 75910S, 75910S-15 (2010).
[CrossRef]

J. W. Arenberg, W. Riede, A. Ciapponi, P. Allenspacher, and J. Herringer, “An empirical investigation of the laser survivability curve,” Proc. SPIE 7842, 78421B, 78421B-8 (2010).
[CrossRef]

2009 (3)

2008 (3)

T. Pilvi, M. Ritala, M. Leskelä, M. Bischoff, U. Kaiser, and N. Kaiser, “Atomic layer deposition process with TiF4 as a precursor for depositing metal fluoride thin films,” Appl. Opt. 47(13), C271–C274 (2008).
[CrossRef] [PubMed]

N. B. Abaffy, P. Evans, G. Triani, and D. McCulloch, “Multilayer alumina and titania optical coatings prepared by atomic layer deposition,” Proc. SPIE 7041, 70419 (2008).

M. Mero, L. A. Emmert, and W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209, 713209-10 (2008).
[CrossRef]

2007 (1)

2005 (2)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

A. Melninkaitis, D. Miksys, R. Grigonis, V. Sirutkaitis, D. Tumosa, G. Skokov, and D. Kuzma, “Multiple pulse laser-induced damage of antireflection coated lithium triborate,” Proc. SPIE 5963, 59631I, 59631I-8 (2005).
[CrossRef]

2004 (1)

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[CrossRef]

2003 (1)

E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
[CrossRef]

2002 (3)

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1-2), 248–261 (2002).
[CrossRef]

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 160–165 (2002).
[CrossRef]

L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 10(25), 1465–1474 (2002).
[PubMed]

1999 (1)

M. Ritala and M. Leskelä, “Atomic layer epitaxy—a valuable tool for nanotechnology?” Nanotechnology 10(1), 19–24 (1999).
[CrossRef]

1997 (1)

J. DiJon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in laser damage thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

Abaffy, N. B.

N. B. Abaffy, P. Evans, G. Triani, and D. McCulloch, “Multilayer alumina and titania optical coatings prepared by atomic layer deposition,” Proc. SPIE 7041, 70419 (2008).

Allenspacher, P.

A. Ciapponi, P. Allenspacher, W. Riede, J. Herringer, and J. Arenberg, “S on 1 testing of AR and HR designs at 1064nm,” Proc. SPIE 7842, 78420J, 78420J-6 (2010).
[CrossRef]

J. W. Arenberg, W. Riede, A. Ciapponi, P. Allenspacher, and J. Herringer, “An empirical investigation of the laser survivability curve,” Proc. SPIE 7842, 78421B, 78421B-8 (2010).
[CrossRef]

Amra, C.

Arenberg, J.

A. Ciapponi, P. Allenspacher, W. Riede, J. Herringer, and J. Arenberg, “S on 1 testing of AR and HR designs at 1064nm,” Proc. SPIE 7842, 78420J, 78420J-6 (2010).
[CrossRef]

Arenberg, J. W.

J. W. Arenberg, W. Riede, A. Ciapponi, P. Allenspacher, and J. Herringer, “An empirical investigation of the laser survivability curve,” Proc. SPIE 7842, 78421B, 78421B-8 (2010).
[CrossRef]

J. W. Arenberg, “Life testing for laser optics: a first look,” Proc. SPIE 7504, 7504I (2009).

Avrutsky, I.

Bischoff, M.

Brunner, R.

Campbell, J. H.

E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
[CrossRef]

Chen, S. L.

Ciapponi, A.

A. Ciapponi, P. Allenspacher, W. Riede, J. Herringer, and J. Arenberg, “S on 1 testing of AR and HR designs at 1064nm,” Proc. SPIE 7842, 78420J, 78420J-6 (2010).
[CrossRef]

J. W. Arenberg, W. Riede, A. Ciapponi, P. Allenspacher, and J. Herringer, “An empirical investigation of the laser survivability curve,” Proc. SPIE 7842, 78421B, 78421B-8 (2010).
[CrossRef]

Clark-Phelps, R. B.

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1-2), 248–261 (2002).
[CrossRef]

Desrumaux, C.

J. DiJon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in laser damage thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

DiJon, J.

J. DiJon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in laser damage thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

Ding, T.

Emmert, L. A.

M. Mero, L. A. Emmert, and W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209, 713209-10 (2008).
[CrossRef]

Evans, P.

N. B. Abaffy, P. Evans, G. Triani, and D. McCulloch, “Multilayer alumina and titania optical coatings prepared by atomic layer deposition,” Proc. SPIE 7041, 70419 (2008).

Gabriel, N. T.

Gallais, L.

Gösele, U.

Grigonis, R.

A. Melninkaitis, D. Miksys, R. Grigonis, V. Sirutkaitis, D. Tumosa, G. Skokov, and D. Kuzma, “Multiple pulse laser-induced damage of antireflection coated lithium triborate,” Proc. SPIE 5963, 59631I, 59631I-8 (2005).
[CrossRef]

Helgert, M.

Herringer, J.

A. Ciapponi, P. Allenspacher, W. Riede, J. Herringer, and J. Arenberg, “S on 1 testing of AR and HR designs at 1064nm,” Proc. SPIE 7842, 78420J, 78420J-6 (2010).
[CrossRef]

J. W. Arenberg, W. Riede, A. Ciapponi, P. Allenspacher, and J. Herringer, “An empirical investigation of the laser survivability curve,” Proc. SPIE 7842, 78421B, 78421B-8 (2010).
[CrossRef]

Heyroth, F.

Jiao, H. F.

Jitsuno, T.

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[CrossRef]

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 160–165 (2002).
[CrossRef]

Kaiser, N.

Kaiser, U.

Kim, S. S.

Knez, M.

Kumar, P.

Kuzma, D.

A. Melninkaitis, D. Miksys, R. Grigonis, V. Sirutkaitis, D. Tumosa, G. Skokov, and D. Kuzma, “Multiple pulse laser-induced damage of antireflection coated lithium triborate,” Proc. SPIE 5963, 59631I, 59631I-8 (2005).
[CrossRef]

Leskelä, M.

Liu, H.

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Liu, Z. C.

Londergan, A. R.

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1-2), 248–261 (2002).
[CrossRef]

Maula, J.

J. Maula, “Atomic layer deposition (ALD) for optical nanofabrication,” Proc. SPIE 7591, 75910S, 75910S-15 (2010).
[CrossRef]

McCulloch, D.

N. B. Abaffy, P. Evans, G. Triani, and D. McCulloch, “Multilayer alumina and titania optical coatings prepared by atomic layer deposition,” Proc. SPIE 7041, 70419 (2008).

Melninkaitis, A.

A. Melninkaitis, D. Miksys, R. Grigonis, V. Sirutkaitis, D. Tumosa, G. Skokov, and D. Kuzma, “Multiple pulse laser-induced damage of antireflection coated lithium triborate,” Proc. SPIE 5963, 59631I, 59631I-8 (2005).
[CrossRef]

Mero, M.

M. Mero, L. A. Emmert, and W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209, 713209-10 (2008).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Miksys, D.

A. Melninkaitis, D. Miksys, R. Grigonis, V. Sirutkaitis, D. Tumosa, G. Skokov, and D. Kuzma, “Multiple pulse laser-induced damage of antireflection coated lithium triborate,” Proc. SPIE 5963, 59631I, 59631I-8 (2005).
[CrossRef]

Moses, E. I.

E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
[CrossRef]

Motokoshi, S.

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[CrossRef]

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 160–165 (2002).
[CrossRef]

Nakatsuka, M.

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[CrossRef]

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 160–165 (2002).
[CrossRef]

Natoli, J. Y.

Papernov, S.

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: Absorption sources, initiation, growth, and mitigation,” Proc. SPIE7132, 71321J (2008).

Pilvi, T.

Poiroux, T.

J. DiJon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in laser damage thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

Riede, W.

A. Ciapponi, P. Allenspacher, W. Riede, J. Herringer, and J. Arenberg, “S on 1 testing of AR and HR designs at 1064nm,” Proc. SPIE 7842, 78420J, 78420J-6 (2010).
[CrossRef]

J. W. Arenberg, W. Riede, A. Ciapponi, P. Allenspacher, and J. Herringer, “An empirical investigation of the laser survivability curve,” Proc. SPIE 7842, 78421B, 78421B-8 (2010).
[CrossRef]

Ristau, D.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Ritala, M.

Rudolph, W.

M. Mero, L. A. Emmert, and W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209, 713209-10 (2008).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Schmid, A. W.

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: Absorption sources, initiation, growth, and mitigation,” Proc. SPIE7132, 71321J (2008).

Seidel, T. E.

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1-2), 248–261 (2002).
[CrossRef]

Sheng, O. Y.

Sirutkaitis, V.

A. Melninkaitis, D. Miksys, R. Grigonis, V. Sirutkaitis, D. Tumosa, G. Skokov, and D. Kuzma, “Multiple pulse laser-induced damage of antireflection coated lithium triborate,” Proc. SPIE 5963, 59631I, 59631I-8 (2005).
[CrossRef]

Skokov, G.

A. Melninkaitis, D. Miksys, R. Grigonis, V. Sirutkaitis, D. Tumosa, G. Skokov, and D. Kuzma, “Multiple pulse laser-induced damage of antireflection coated lithium triborate,” Proc. SPIE 5963, 59631I, 59631I-8 (2005).
[CrossRef]

Sneh, O.

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1-2), 248–261 (2002).
[CrossRef]

Song, W. B.

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Stolz, C. J.

E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
[CrossRef]

Szeghalmi, A.

Talghader, J. J.

Triani, G.

N. B. Abaffy, P. Evans, G. Triani, and D. McCulloch, “Multilayer alumina and titania optical coatings prepared by atomic layer deposition,” Proc. SPIE 7041, 70419 (2008).

Tumosa, D.

A. Melninkaitis, D. Miksys, R. Grigonis, V. Sirutkaitis, D. Tumosa, G. Skokov, and D. Kuzma, “Multiple pulse laser-induced damage of antireflection coated lithium triborate,” Proc. SPIE 5963, 59631I, 59631I-8 (2005).
[CrossRef]

Wei, Y. W.

Wiedmann, M. K.

Winkler, J.

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1-2), 248–261 (2002).
[CrossRef]

Winter, C. H.

Wuest, C. R.

E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
[CrossRef]

Yamanaka, T.

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[CrossRef]

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 160–165 (2002).
[CrossRef]

Yang, L. L.

Zaitsu, S.

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[CrossRef]

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 160–165 (2002).
[CrossRef]

Zhang, Q.

Appl. Opt. (4)

Jpn. J. Appl. Phys. (2)

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[CrossRef]

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 160–165 (2002).
[CrossRef]

Nanotechnology (1)

M. Ritala and M. Leskelä, “Atomic layer epitaxy—a valuable tool for nanotechnology?” Nanotechnology 10(1), 19–24 (1999).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Proc. SPIE (9)

J. Maula, “Atomic layer deposition (ALD) for optical nanofabrication,” Proc. SPIE 7591, 75910S, 75910S-15 (2010).
[CrossRef]

N. B. Abaffy, P. Evans, G. Triani, and D. McCulloch, “Multilayer alumina and titania optical coatings prepared by atomic layer deposition,” Proc. SPIE 7041, 70419 (2008).

J. DiJon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in laser damage thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

A. Ciapponi, P. Allenspacher, W. Riede, J. Herringer, and J. Arenberg, “S on 1 testing of AR and HR designs at 1064nm,” Proc. SPIE 7842, 78420J, 78420J-6 (2010).
[CrossRef]

A. Melninkaitis, D. Miksys, R. Grigonis, V. Sirutkaitis, D. Tumosa, G. Skokov, and D. Kuzma, “Multiple pulse laser-induced damage of antireflection coated lithium triborate,” Proc. SPIE 5963, 59631I, 59631I-8 (2005).
[CrossRef]

M. Mero, L. A. Emmert, and W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209, 713209-10 (2008).
[CrossRef]

J. W. Arenberg, “Life testing for laser optics: a first look,” Proc. SPIE 7504, 7504I (2009).

J. W. Arenberg, W. Riede, A. Ciapponi, P. Allenspacher, and J. Herringer, “An empirical investigation of the laser survivability curve,” Proc. SPIE 7842, 78421B, 78421B-8 (2010).
[CrossRef]

E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
[CrossRef]

Thin Solid Films (1)

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1-2), 248–261 (2002).
[CrossRef]

Other (1)

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: Absorption sources, initiation, growth, and mitigation,” Proc. SPIE7132, 71321J (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Comparison of 1-on-1 test results of TiO2/Al2O3 AR coatings grown by ALD and e-beam

Fig. 2
Fig. 2

Decline of LIDT for TiO2 and Al2O3 single layer with growth temperature

Fig. 3
Fig. 3

Comparison of surface roughness of TiO2 single layer grown by ALD at 110°C (left) and 280°C (right)

Fig. 4
Fig. 4

Typical damage morphology of TiO2/Al2O3 AR coatings grown by ALD, (a) Nomarski microscope photograph under 500× magnification; (b) SEM photograph under 10000 × magnification; (c) AFM photograph, the depth of crater is about 254nm.

Fig. 5
Fig. 5

Crater-depth histogram for TiO2/Al2O3 coatings irradiated by 1064-nm laser at a fluence of 5% over 1-on-1 damage threshold

Fig. 6
Fig. 6

Comparison of S-on-1 performance of TiO2/Al2O3 coatings grown by ALD and e-beam process, obeyed exponential decay rule.

Fig. 7
Fig. 7

R-on-1 damage test results of TiO2/Al2O3 AR coatings. ALD samples show better laser damage resistance than e-beam ones. Further, samples grown at 110°C have more significant laser conditioning effect than those grown at 280°C.

Fig. 8
Fig. 8

Comparison of 1-on-1 damage probability curves for HfO2/Al2O3 AR coatings grown by ALD and e-beam process.

Fig. 9
Fig. 9

LIDT histogram of Al2O3 and HfO2 single layer grown with organic precursors (OP) and inorganic precursors (IP), respectively

Fig. 10
Fig. 10

Typical damage morphology of HfO2/Al2O3 AR coatings grown by ALD, (a) Nomarski microscope photograph under 50 × magnification; (b) SEM photograph under 7000 × magnification; (c) AFM photograph, the depth of crater is about 191nm

Fig. 11
Fig. 11

Crater-depth histogram for HfO2/Al2O3 AR coatings irradiated by 1064-nm laser at a fluence of 5% over damage threshold

Fig. 12
Fig. 12

R-on-1 experiment result of ALD and e-beam Al2O3/ HfO2 AR coatings. Possible due to the carbon impurities in Al2O3 layer, the laser condition effect of ALD samples is much less than e-beam ones.

Tables (3)

Tables Icon

Table 1 Sample deposition parameters

Tables Icon

Table 2 Transmission and refractive index of single and AR coatings grown with TiO2 and Al2O3

Tables Icon

Table 3 Transmission and refractive index of single and AR coatings grown with HfO2 and Al2O3

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F(N)=Aexp(N/B)+ Φ

Metrics