Abstract

We report spectrally-resolved chemical imaging based on Raman induced Kerr effect spectroscopy (RIKES). When used with circularly-polarized pump excitation, multiplex RIKES offers the potential for spectrally-resolved imaging free of the nonresonant background that plagues coherent anti-Stokes Raman scattering. RIKES does however have a highly sample-dependent birefringent background that limits its sensitivity and can introduce spectral distortions. We demonstrate that in low birefringence samples multiplex RIKES microscopy offers an enhanced signal-to-noise ratio compared to multiplex stimulated Raman scattering (SRS) when implemented in a high polarization-purity, low frequency chopping scheme.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
    [CrossRef] [PubMed]
  2. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [CrossRef]
  3. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  4. A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–R81 (2005).
    [CrossRef]
  5. J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
    [CrossRef] [PubMed]
  6. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
    [CrossRef] [PubMed]
  7. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006).
    [CrossRef] [PubMed]
  8. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys B: Lasers Opt. 87(3), 389–393 (2007).
    [CrossRef]
  9. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  10. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
    [CrossRef]
  11. D. Zhang, M. N. Slipchenko, and J. X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J. Phys. Chem. Lett. 2(11), 1248–1253 (2011).
    [CrossRef] [PubMed]
  12. C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
    [CrossRef]
  13. E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36(13), 2387–2389 (2011).
    [CrossRef] [PubMed]
  14. H. T. Beier, G. D. Noojin, and B. A. Rockwell, “Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications,” Opt. Express 19(20), 18885–18892 (2011).
    [CrossRef] [PubMed]
  15. Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express 18(13), 13708–13719 (2010).
    [CrossRef] [PubMed]
  16. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [CrossRef] [PubMed]
  17. E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
    [CrossRef] [PubMed]
  18. S. Bourquin, R. P. Prasankumar, F. X. Kärtner, J. G. Fujimoto, T. Lasser, and R. P. Salathé, “High-speed femtosecond pump-probe spectroscopy with a smart pixel detector array,” Opt. Lett. 28(17), 1588–1590 (2003).
    [CrossRef] [PubMed]
  19. L. N. Guo, Z. L. Tang, and D. Xing, “Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy,” Sci. China, Ser. G 51(7), 788–796 (2008).
    [CrossRef]
  20. C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical heterodyne-detected Raman-induced Kerr effect (OHD-RIKE) microscopy,” J. Phys. Chem. B 115(18), 5574–5581 (2011).
    [CrossRef] [PubMed]
  21. S. Shim and R. A. Mathies, “Femtosecond Raman-induced Kerr effect spectroscopy,” J. Raman Spectrosc. 39(11), 1526–1530 (2008).
    [CrossRef]
  22. P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
    [CrossRef] [PubMed]
  23. D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy,” Appl. Spectrosc. 57(11), 1317–1323 (2003).
    [CrossRef] [PubMed]
  24. D. Heiman, R. W. Hellwarth, M. D. Levenson, and G. Martin, “Raman-induced Kerr Effect,” Phys. Rev. Lett. 36(4), 189–192 (1976).
    [CrossRef]
  25. G. L. Eesley, Coherent Raman Spectroscopy (Elsevier, 1981), p. 150.
  26. R. W. Boyd, Nonlinear Optics (Academic Press, 1992), p. 439.
  27. G. L. Eesley, “Coherent Raman spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 22(6), 507–576 (1979).
    [CrossRef]
  28. M. D. Levenson and J. J. Song, “Raman-induced Kerr effect with elliptical polarization,” J. Opt. Soc. Am. 66(7), 641–643 (1976).
    [CrossRef]
  29. L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
    [CrossRef] [PubMed]
  30. P. J. Hendra and J. K. Agbenyega, The Raman Spectra of Polymers (John Wiley and Sons, 1993).
  31. I. H. Shin, J. Y. Lee, S. Lee, D. J. Lee, and D. Y. Kim, “Measurement of relative phase distribution of onion epidermal cells by using the polarization microscope - art. no. 644317,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIV, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds. (2007), pp. 44317–44317.
  32. J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
    [CrossRef] [PubMed]
  33. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
    [CrossRef]
  34. M. Cui, M. Joffre, J. Skodack, and J. P. Ogilvie, “Interferometric Fourier transform coherent anti-Stokes Raman scattering,” Opt. Express 14(18), 8448–8458 (2006).
    [CrossRef] [PubMed]
  35. S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
    [CrossRef] [PubMed]
  36. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [CrossRef] [PubMed]
  37. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
    [CrossRef] [PubMed]
  38. Y. X. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
    [CrossRef] [PubMed]
  39. M. D. Levenson and G. L. Eesley, “Polarization selective optical heterodyne-detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. (Berl.) 19(1), 1–17 (1979).
    [CrossRef]
  40. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B: Lasers Opt. 77(2-3), 269–277 (2003).
    [CrossRef]
  41. M. Cui, J. Skodack, and J. P. Ogilvie, “Chemical imaging with Fourier transform coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 47(31), 5790–5798 (2008).
    [CrossRef] [PubMed]
  42. M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express 15(23), 15207–15213 (2007).
    [CrossRef] [PubMed]
  43. G. Giraud, C. M. Gordon, I. R. Dunkin, and K. Wynne, “The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study,” J. Chem. Phys. 119(1), 464–477 (2003).
    [CrossRef]

2011 (6)

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

D. Zhang, M. N. Slipchenko, and J. X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J. Phys. Chem. Lett. 2(11), 1248–1253 (2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical heterodyne-detected Raman-induced Kerr effect (OHD-RIKE) microscopy,” J. Phys. Chem. B 115(18), 5574–5581 (2011).
[CrossRef] [PubMed]

E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36(13), 2387–2389 (2011).
[CrossRef] [PubMed]

H. T. Beier, G. D. Noojin, and B. A. Rockwell, “Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications,” Opt. Express 19(20), 18885–18892 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (3)

2008 (6)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

S. Shim and R. A. Mathies, “Femtosecond Raman-induced Kerr effect spectroscopy,” J. Raman Spectrosc. 39(11), 1526–1530 (2008).
[CrossRef]

L. N. Guo, Z. L. Tang, and D. Xing, “Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy,” Sci. China, Ser. G 51(7), 788–796 (2008).
[CrossRef]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef] [PubMed]

M. Cui, J. Skodack, and J. P. Ogilvie, “Chemical imaging with Fourier transform coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 47(31), 5790–5798 (2008).
[CrossRef] [PubMed]

L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
[CrossRef] [PubMed]

2007 (3)

M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express 15(23), 15207–15213 (2007).
[CrossRef] [PubMed]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys B: Lasers Opt. 87(3), 389–393 (2007).
[CrossRef]

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
[CrossRef] [PubMed]

2006 (4)

2005 (1)

A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–R81 (2005).
[CrossRef]

2004 (2)

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
[CrossRef] [PubMed]

2003 (4)

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy,” Appl. Spectrosc. 57(11), 1317–1323 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B: Lasers Opt. 77(2-3), 269–277 (2003).
[CrossRef]

G. Giraud, C. M. Gordon, I. R. Dunkin, and K. Wynne, “The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study,” J. Chem. Phys. 119(1), 464–477 (2003).
[CrossRef]

S. Bourquin, R. P. Prasankumar, F. X. Kärtner, J. G. Fujimoto, T. Lasser, and R. P. Salathé, “High-speed femtosecond pump-probe spectroscopy with a smart pixel detector array,” Opt. Lett. 28(17), 1588–1590 (2003).
[CrossRef] [PubMed]

2002 (2)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

2001 (1)

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

1979 (2)

G. L. Eesley, “Coherent Raman spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 22(6), 507–576 (1979).
[CrossRef]

M. D. Levenson and G. L. Eesley, “Polarization selective optical heterodyne-detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. (Berl.) 19(1), 1–17 (1979).
[CrossRef]

1976 (2)

M. D. Levenson and J. J. Song, “Raman-induced Kerr effect with elliptical polarization,” J. Opt. Soc. Am. 66(7), 641–643 (1976).
[CrossRef]

D. Heiman, R. W. Hellwarth, M. D. Levenson, and G. Martin, “Raman-induced Kerr Effect,” Phys. Rev. Lett. 36(4), 189–192 (1976).
[CrossRef]

Alexandrou, A.

Andresen, E. R.

Beaurepaire, E.

Beier, H. T.

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys B: Lasers Opt. 87(3), 389–393 (2007).
[CrossRef]

Berto, P.

Bonn, M.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
[CrossRef] [PubMed]

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef] [PubMed]

Bourquin, S.

Caster, A. G.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

Cheng, J. X.

D. Zhang, M. N. Slipchenko, and J. X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J. Phys. Chem. Lett. 2(11), 1248–1253 (2011).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef] [PubMed]

Cicerone, M. T.

Coen, S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B: Lasers Opt. 77(2-3), 269–277 (2003).
[CrossRef]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B: Lasers Opt. 77(2-3), 269–277 (2003).
[CrossRef]

Cui, M.

Dantus, M.

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

Day, J. P. R.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B: Lasers Opt. 77(2-3), 269–277 (2003).
[CrossRef]

Domke, K. F.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

Dong, L.

Dudley, J. M.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B: Lasers Opt. 77(2-3), 269–277 (2003).
[CrossRef]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Dunkin, I. R.

G. Giraud, C. M. Gordon, I. R. Dunkin, and K. Wynne, “The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study,” J. Chem. Phys. 119(1), 464–477 (2003).
[CrossRef]

Eesley, G. L.

M. D. Levenson and G. L. Eesley, “Polarization selective optical heterodyne-detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. (Berl.) 19(1), 1–17 (1979).
[CrossRef]

G. L. Eesley, “Coherent Raman spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 22(6), 507–576 (1979).
[CrossRef]

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef] [PubMed]

Freudiger, C. W.

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical heterodyne-detected Raman-induced Kerr effect (OHD-RIKE) microscopy,” J. Phys. Chem. B 115(18), 5574–5581 (2011).
[CrossRef] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Fu, L.

Fujimoto, J. G.

Fukui, K.

Gilch, P.

E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
[CrossRef] [PubMed]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys B: Lasers Opt. 87(3), 389–393 (2007).
[CrossRef]

Giraud, G.

G. Giraud, C. M. Gordon, I. R. Dunkin, and K. Wynne, “The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study,” J. Chem. Phys. 119(1), 464–477 (2003).
[CrossRef]

Gordon, C. M.

G. Giraud, C. M. Gordon, I. R. Dunkin, and K. Wynne, “The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study,” J. Chem. Phys. 119(1), 464–477 (2003).
[CrossRef]

Guo, L. N.

L. N. Guo, Z. L. Tang, and D. Xing, “Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy,” Sci. China, Ser. G 51(7), 788–796 (2008).
[CrossRef]

Hamaguchi, H. O.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

He, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Heiman, D.

D. Heiman, R. W. Hellwarth, M. D. Levenson, and G. Martin, “Raman-induced Kerr Effect,” Phys. Rev. Lett. 36(4), 189–192 (1976).
[CrossRef]

Hellwarth, R. W.

D. Heiman, R. W. Hellwarth, M. D. Levenson, and G. Martin, “Raman-induced Kerr Effect,” Phys. Rev. Lett. 36(4), 189–192 (1976).
[CrossRef]

Holtom, G. R.

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Huber, R.

Itoh, K.

Joffre, M.

Jurna, M.

Kajiyama, S.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Kano, H.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

Kärtner, F. X.

Kee, T. W.

Kitagawa, Y.

Klein, T.

Korterik, J. P.

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[CrossRef]

Kukura, P.

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys B: Lasers Opt. 87(3), 389–393 (2007).
[CrossRef]

Lasser, T.

Lee, Y. J.

Leone, S. R.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

Levenson, M. D.

M. D. Levenson and G. L. Eesley, “Polarization selective optical heterodyne-detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. (Berl.) 19(1), 1–17 (1979).
[CrossRef]

M. D. Levenson and J. J. Song, “Raman-induced Kerr effect with elliptical polarization,” J. Opt. Soc. Am. 66(7), 641–643 (1976).
[CrossRef]

D. Heiman, R. W. Hellwarth, M. D. Levenson, and G. Martin, “Raman-induced Kerr Effect,” Phys. Rev. Lett. 36(4), 189–192 (1976).
[CrossRef]

Lim, S. H.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

Liu, Y. X.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Martin, G.

D. Heiman, R. W. Hellwarth, M. D. Levenson, and G. Martin, “Raman-induced Kerr Effect,” Phys. Rev. Lett. 36(4), 189–192 (1976).
[CrossRef]

Marx, B.

Mathies, R. A.

S. Shim and R. A. Mathies, “Femtosecond Raman-induced Kerr effect spectroscopy,” J. Raman Spectrosc. 39(11), 1526–1530 (2008).
[CrossRef]

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy,” Appl. Spectrosc. 57(11), 1317–1323 (2003).
[CrossRef] [PubMed]

McCamant, D. W.

Min, W.

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical heterodyne-detected Raman-induced Kerr effect (OHD-RIKE) microscopy,” J. Phys. Chem. B 115(18), 5574–5581 (2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Müller, M.

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[CrossRef]

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B: Lasers Opt. 77(2-3), 269–277 (2003).
[CrossRef]

Nicolet, O.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

Nishizawa, N.

Noojin, G. D.

Offerhaus, H. L.

Ogilvie, J. P.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Otto, C.

Ozeki, Y.

Ploetz, E.

E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
[CrossRef] [PubMed]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys B: Lasers Opt. 87(3), 389–393 (2007).
[CrossRef]

Prasankumar, R. P.

Rago, G.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Rigneault, H.

Rinia, H. A.

Rockwell, B. A.

Roeffaers, M. B. J.

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical heterodyne-detected Raman-induced Kerr effect (OHD-RIKE) microscopy,” J. Phys. Chem. B 115(18), 5574–5581 (2011).
[CrossRef] [PubMed]

Saar, B. G.

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical heterodyne-detected Raman-induced Kerr effect (OHD-RIKE) microscopy,” J. Phys. Chem. B 115(18), 5574–5581 (2011).
[CrossRef] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Salathé, R. P.

Shim, S.

S. Shim and R. A. Mathies, “Femtosecond Raman-induced Kerr effect spectroscopy,” J. Raman Spectrosc. 39(11), 1526–1530 (2008).
[CrossRef]

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Skodack, J.

Slipchenko, M. N.

D. Zhang, M. N. Slipchenko, and J. X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J. Phys. Chem. Lett. 2(11), 1248–1253 (2011).
[CrossRef] [PubMed]

Song, J. J.

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Sumimura, K.

Tang, Z. L.

L. N. Guo, Z. L. Tang, and D. Xing, “Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy,” Sci. China, Ser. G 51(7), 788–796 (2008).
[CrossRef]

Thomas, B. K.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Umemura, W.

Vartiainen, E. M.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
[CrossRef] [PubMed]

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[CrossRef]

A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–R81 (2005).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

Washburn, B. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B: Lasers Opt. 77(2-3), 269–277 (2003).
[CrossRef]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B: Lasers Opt. 77(2-3), 269–277 (2003).
[CrossRef]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B: Lasers Opt. 77(2-3), 269–277 (2003).
[CrossRef]

Wynne, K.

G. Giraud, C. M. Gordon, I. R. Dunkin, and K. Wynne, “The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study,” J. Chem. Phys. 119(1), 464–477 (2003).
[CrossRef]

Xie, X. S.

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical heterodyne-detected Raman-induced Kerr effect (OHD-RIKE) microscopy,” J. Phys. Chem. B 115(18), 5574–5581 (2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Xing, D.

L. N. Guo, Z. L. Tang, and D. Xing, “Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy,” Sci. China, Ser. G 51(7), 788–796 (2008).
[CrossRef]

Xu, B. W.

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

Zhang, D.

D. Zhang, M. N. Slipchenko, and J. X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J. Phys. Chem. Lett. 2(11), 1248–1253 (2011).
[CrossRef] [PubMed]

Zhang, X.

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical heterodyne-detected Raman-induced Kerr effect (OHD-RIKE) microscopy,” J. Phys. Chem. B 115(18), 5574–5581 (2011).
[CrossRef] [PubMed]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys B: Lasers Opt. 87(3), 389–393 (2007).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Annu. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys B: Lasers Opt. (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B: Lasers Opt. 77(2-3), 269–277 (2003).
[CrossRef]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys B: Lasers Opt. 87(3), 389–393 (2007).
[CrossRef]

Appl. Phys. (Berl.) (1)

M. D. Levenson and G. L. Eesley, “Polarization selective optical heterodyne-detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. (Berl.) 19(1), 1–17 (1979).
[CrossRef]

Appl. Phys. Lett. (1)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

Appl. Spectrosc. (1)

J. Chem. Phys. (1)

G. Giraud, C. M. Gordon, I. R. Dunkin, and K. Wynne, “The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study,” J. Chem. Phys. 119(1), 464–477 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (4)

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical heterodyne-detected Raman-induced Kerr effect (OHD-RIKE) microscopy,” J. Phys. Chem. B 115(18), 5574–5581 (2011).
[CrossRef] [PubMed]

J. Phys. Chem. Lett. (1)

D. Zhang, M. N. Slipchenko, and J. X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J. Phys. Chem. Lett. 2(11), 1248–1253 (2011).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–R81 (2005).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

G. L. Eesley, “Coherent Raman spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 22(6), 507–576 (1979).
[CrossRef]

J. Raman Spectrosc. (1)

S. Shim and R. A. Mathies, “Femtosecond Raman-induced Kerr effect spectroscopy,” J. Raman Spectrosc. 39(11), 1526–1530 (2008).
[CrossRef]

Nat. Photonics (1)

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

New J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[CrossRef]

Opt. Express (7)

Opt. Lett. (6)

Phys. Rev. Lett. (2)

D. Heiman, R. W. Hellwarth, M. D. Levenson, and G. Martin, “Raman-induced Kerr Effect,” Phys. Rev. Lett. 36(4), 189–192 (1976).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Sci. China, Ser. G (1)

L. N. Guo, Z. L. Tang, and D. Xing, “Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy,” Sci. China, Ser. G 51(7), 788–796 (2008).
[CrossRef]

Science (2)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Other (4)

G. L. Eesley, Coherent Raman Spectroscopy (Elsevier, 1981), p. 150.

R. W. Boyd, Nonlinear Optics (Academic Press, 1992), p. 439.

P. J. Hendra and J. K. Agbenyega, The Raman Spectra of Polymers (John Wiley and Sons, 1993).

I. H. Shin, J. Y. Lee, S. Lee, D. J. Lee, and D. Y. Kim, “Measurement of relative phase distribution of onion epidermal cells by using the polarization microscope - art. no. 644317,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIV, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds. (2007), pp. 44317–44317.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics