H. Y. Zhang and T. Q. Liao, “Scattering of Gaussian beam by a spherical particle with a spheroidal inclusion,” J. Quant. Spectrosc. Radiat. Transf. 112(9), 1486–1491 (2011).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Scattering of Gaussian beam by a spheroidal particle with a spherical inclusion at the center,” Opt. Commun. 284(16–17), 3811–3815 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Appl. 25(2), 211–222 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz-Mie theory: internal and external field distribution,” J. Opt. Soc. Am. A 28(1), 24–39 (2011).

[CrossRef]
[PubMed]

J. J. Wang, G. Gouesbet, G. Gréhan, Y. P. Han, and S. Saengkaew, “Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam: parallel and perpendicular beam incidence,” J. Opt. Soc. Am. A 28(9), 1849–1859 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, and Q. Xu, “Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams,” J. Opt. Soc. Am. A 28(11), 2200–2208 (2011).

[CrossRef]
[PubMed]

Z. W. Cui, Y. P. Han, and H. Y. Zhang, “Scattering of an arbitrarily incident focused Gaussian beam by arbitrarily shaped dielectric particles,” J. Opt. Soc. Am. B 28(11), 2625–2632 (2011).

[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18(15), 15876–15886 (2010).

[CrossRef]
[PubMed]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz-Mie theories through rotations of coordinate systemsIII. Special Euler angles,” Opt. Commun. 283(17), 3235–3243 (2010).

[CrossRef]

M. Mikrenska and P. Koulev, “Simulation of light scattering by large particles with randomly distributed spherical or cubic inclusions,” J. Quant. Spectrosc. Radiat. Transf. 110(14–16), 1411–1417 (2009).

[CrossRef]

S. Xian-Ming, W. Hai-Hua, L. Wan-Qiang, and S. Jin, “Light scattering by a spherical particle with multiple densely packed inclusions,” Chin. Phys. B 18(3), 1040–1044 (2009).

[CrossRef]

B. Yan, X. E. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11(1), 015705 (2009).

[CrossRef]

D. K. Wu and Y. P. Zhou, “Forward scattering light of droplets containing different size inclusions,” Appl. Opt. 48(15), 2957–2965 (2009).

[CrossRef]
[PubMed]

D. W. Mackowski, “A simplified model to predict the effects of aggregation on the absorption properties of soot particles,” J. Quant. Spectrosc. Radiat. Transf. 100(1–3), 237–249 (2006).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general composite metallic and dielectric structures with junctions,” Prog. Electromagn. Res. 52, 81–108 (2005).

[CrossRef]

T. Weigel, J. Schulte, and G. Schweiger, “Inelastic scattering on particles with inclusions,” J. Opt. Soc. Am. A 22(6), 1048–1052 (2005).

[CrossRef]
[PubMed]

G. Gouesbet and G. Gréhan, “Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47(5), 821–837 (2000).

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99(1), 94–112 (1996).

[CrossRef]

A. Macke, M. I. Mishchenko, and B. Cairns, “The influence of inclusions on light scattering by large ice particles,” J. Geophys. Res. 101(D18), 23311–23316 (1996).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33(3), 484–493 (1994).

[CrossRef]
[PubMed]

E. E. Khaled, S. C. Hill, and P. W. Barber, “Light scattering by a coated sphere illuminated with a Gaussian beam,” Appl. Opt. 33(15), 3308–3314 (1994).

[CrossRef]
[PubMed]

N. C. Skaropoulos, M. P. Ioannidou, and D. P. Chrissoulidis, “Indirect mode-matching solution to scattering from a dielectric sphere with an eccentric inclusion,” J. Opt. Soc. Am. A 11(6), 1859–1866 (1994).

[CrossRef]

R. D. Graglia, “On the numerical integration of the linear shape functions times the 3-D green’s function or its gradient on a plane triangle,” IEEE Trans. Antenn. Propag. 41(10), 1448–1455 (1993).

[CrossRef]

S. M. Rao, C. C. Cha, R. L. Cravey, and D. Wilkes, “Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness,” IEEE Trans. Antenn. Propag. 39(5), 627–631 (1991).

[CrossRef]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66(7), 2800–2802 (1989).

[CrossRef]

D. A. Dunavant, “High degree efficient symmetrical Gaussian quadrature rules for the triangle,” Int. J. Numer. Methods Eng. 21(6), 1129–1148 (1985).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30(3), 409–418 (1982).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979).

[CrossRef]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66(7), 2800–2802 (1989).

[CrossRef]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66(7), 2800–2802 (1989).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33(3), 484–493 (1994).

[CrossRef]
[PubMed]

F. Borghese, P. Denti, R. Saija, and O. I. Sindoni, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9(8), 1327–1335 (1992).

[CrossRef]

A. Macke, M. I. Mishchenko, and B. Cairns, “The influence of inclusions on light scattering by large ice particles,” J. Geophys. Res. 101(D18), 23311–23316 (1996).

[CrossRef]

S. M. Rao, C. C. Cha, R. L. Cravey, and D. Wilkes, “Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness,” IEEE Trans. Antenn. Propag. 39(5), 627–631 (1991).

[CrossRef]

A. P. Moneda and D. P. Chrissoulidis, “Dyadic Green’s function of a sphere with an eccentric spherical inclusion,” J. Opt. Soc. Am. A 24(6), 1695–1703 (2007).

[CrossRef]
[PubMed]

M. P. Ioannidou and D. P. Chrissoulidis, “Electromagnetic-wave scattering by a sphere with multiple spherical inclusions,” J. Opt. Soc. Am. A 19(3), 505–512 (2002).

[CrossRef]
[PubMed]

N. C. Skaropoulos, M. P. Ioannidou, and D. P. Chrissoulidis, “Indirect mode-matching solution to scattering from a dielectric sphere with an eccentric inclusion,” J. Opt. Soc. Am. A 11(6), 1859–1866 (1994).

[CrossRef]

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99(1), 94–112 (1996).

[CrossRef]

S. M. Rao, C. C. Cha, R. L. Cravey, and D. Wilkes, “Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness,” IEEE Trans. Antenn. Propag. 39(5), 627–631 (1991).

[CrossRef]

Z. W. Cui, Y. P. Han, and Q. Xu, “Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams,” J. Opt. Soc. Am. A 28(11), 2200–2208 (2011).

[CrossRef]
[PubMed]

Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Appl. 25(2), 211–222 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, and H. Y. Zhang, “Scattering of an arbitrarily incident focused Gaussian beam by arbitrarily shaped dielectric particles,” J. Opt. Soc. Am. B 28(11), 2625–2632 (2011).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33(3), 484–493 (1994).

[CrossRef]
[PubMed]

F. Borghese, P. Denti, R. Saija, and O. I. Sindoni, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9(8), 1327–1335 (1992).

[CrossRef]

D. A. Dunavant, “High degree efficient symmetrical Gaussian quadrature rules for the triangle,” Int. J. Numer. Methods Eng. 21(6), 1129–1148 (1985).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30(3), 409–418 (1982).

[CrossRef]

J. J. Wang, G. Gouesbet, G. Gréhan, Y. P. Han, and S. Saengkaew, “Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam: parallel and perpendicular beam incidence,” J. Opt. Soc. Am. A 28(9), 1849–1859 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz-Mie theory: internal and external field distribution,” J. Opt. Soc. Am. A 28(1), 24–39 (2011).

[CrossRef]
[PubMed]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz-Mie theories through rotations of coordinate systemsIII. Special Euler angles,” Opt. Commun. 283(17), 3235–3243 (2010).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47(5), 821–837 (2000).

R. D. Graglia, “On the numerical integration of the linear shape functions times the 3-D green’s function or its gradient on a plane triangle,” IEEE Trans. Antenn. Propag. 41(10), 1448–1455 (1993).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz-Mie theory: internal and external field distribution,” J. Opt. Soc. Am. A 28(1), 24–39 (2011).

[CrossRef]
[PubMed]

J. J. Wang, G. Gouesbet, G. Gréhan, Y. P. Han, and S. Saengkaew, “Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam: parallel and perpendicular beam incidence,” J. Opt. Soc. Am. A 28(9), 1849–1859 (2011).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47(5), 821–837 (2000).

S. Xian-Ming, W. Hai-Hua, L. Wan-Qiang, and S. Jin, “Light scattering by a spherical particle with multiple densely packed inclusions,” Chin. Phys. B 18(3), 1040–1044 (2009).

[CrossRef]

B. Yan, X. E. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11(1), 015705 (2009).

[CrossRef]

Z. W. Cui, Y. P. Han, and H. Y. Zhang, “Scattering of an arbitrarily incident focused Gaussian beam by arbitrarily shaped dielectric particles,” J. Opt. Soc. Am. B 28(11), 2625–2632 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz-Mie theory: internal and external field distribution,” J. Opt. Soc. Am. A 28(1), 24–39 (2011).

[CrossRef]
[PubMed]

Z. W. Cui, Y. P. Han, and Q. Xu, “Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams,” J. Opt. Soc. Am. A 28(11), 2200–2208 (2011).

[CrossRef]
[PubMed]

J. J. Wang, G. Gouesbet, G. Gréhan, Y. P. Han, and S. Saengkaew, “Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam: parallel and perpendicular beam incidence,” J. Opt. Soc. Am. A 28(9), 1849–1859 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Appl. 25(2), 211–222 (2011).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz-Mie theories through rotations of coordinate systemsIII. Special Euler angles,” Opt. Commun. 283(17), 3235–3243 (2010).

[CrossRef]

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25(12), 2064–2072 (2008).

[CrossRef]

S. Xian-Ming, W. Hai-Hua, L. Wan-Qiang, and S. Jin, “Light scattering by a spherical particle with multiple densely packed inclusions,” Chin. Phys. B 18(3), 1040–1044 (2009).

[CrossRef]

M. Mikrenska and P. Koulev, “Simulation of light scattering by large particles with randomly distributed spherical or cubic inclusions,” J. Quant. Spectrosc. Radiat. Transf. 110(14–16), 1411–1417 (2009).

[CrossRef]

Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Appl. 25(2), 211–222 (2011).

[CrossRef]

H. Y. Zhang and T. Q. Liao, “Scattering of Gaussian beam by a spherical particle with a spheroidal inclusion,” J. Quant. Spectrosc. Radiat. Transf. 112(9), 1486–1491 (2011).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Scattering of Gaussian beam by a spheroidal particle with a spherical inclusion at the center,” Opt. Commun. 284(16–17), 3811–3815 (2011).

[CrossRef]

A. Macke, M. I. Mishchenko, and B. Cairns, “The influence of inclusions on light scattering by large ice particles,” J. Geophys. Res. 101(D18), 23311–23316 (1996).

[CrossRef]

D. W. Mackowski, “A simplified model to predict the effects of aggregation on the absorption properties of soot particles,” J. Quant. Spectrosc. Radiat. Transf. 100(1–3), 237–249 (2006).

[CrossRef]

M. Mikrenska and P. Koulev, “Simulation of light scattering by large particles with randomly distributed spherical or cubic inclusions,” J. Quant. Spectrosc. Radiat. Transf. 110(14–16), 1411–1417 (2009).

[CrossRef]

A. Macke, M. I. Mishchenko, and B. Cairns, “The influence of inclusions on light scattering by large ice particles,” J. Geophys. Res. 101(D18), 23311–23316 (1996).

[CrossRef]

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99(1), 94–112 (1996).

[CrossRef]

G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12(5), 922–928 (1995).

[CrossRef]

S. M. Rao, C. C. Cha, R. L. Cravey, and D. Wilkes, “Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness,” IEEE Trans. Antenn. Propag. 39(5), 627–631 (1991).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30(3), 409–418 (1982).

[CrossRef]

B. Yan, X. E. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11(1), 015705 (2009).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33(3), 484–493 (1994).

[CrossRef]
[PubMed]

F. Borghese, P. Denti, R. Saija, and O. I. Sindoni, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9(8), 1327–1335 (1992).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general composite metallic and dielectric structures with junctions,” Prog. Electromagn. Res. 52, 81–108 (2005).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general composite metallic and dielectric structures with junctions,” Prog. Electromagn. Res. 52, 81–108 (2005).

[CrossRef]

D. R. Prabhu, M. Davies, and G. Videen, “Light scattering calculations from oleic-acid droplets with water inclusions,” Opt. Express 8(6), 308–313 (2001).

[CrossRef]
[PubMed]

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99(1), 94–112 (1996).

[CrossRef]

G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12(5), 922–928 (1995).

[CrossRef]

J. J. Wang, G. Gouesbet, G. Gréhan, Y. P. Han, and S. Saengkaew, “Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam: parallel and perpendicular beam incidence,” J. Opt. Soc. Am. A 28(9), 1849–1859 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz-Mie theory: internal and external field distribution,” J. Opt. Soc. Am. A 28(1), 24–39 (2011).

[CrossRef]
[PubMed]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz-Mie theories through rotations of coordinate systemsIII. Special Euler angles,” Opt. Commun. 283(17), 3235–3243 (2010).

[CrossRef]

S. Xian-Ming, W. Hai-Hua, L. Wan-Qiang, and S. Jin, “Light scattering by a spherical particle with multiple densely packed inclusions,” Chin. Phys. B 18(3), 1040–1044 (2009).

[CrossRef]

S. M. Rao, C. C. Cha, R. L. Cravey, and D. Wilkes, “Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness,” IEEE Trans. Antenn. Propag. 39(5), 627–631 (1991).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30(3), 409–418 (1982).

[CrossRef]

S. Xian-Ming, W. Hai-Hua, L. Wan-Qiang, and S. Jin, “Light scattering by a spherical particle with multiple densely packed inclusions,” Chin. Phys. B 18(3), 1040–1044 (2009).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Scattering of Gaussian beam by a spheroidal particle with a spherical inclusion at the center,” Opt. Commun. 284(16–17), 3811–3815 (2011).

[CrossRef]

B. Yan, X. E. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11(1), 015705 (2009).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general composite metallic and dielectric structures with junctions,” Prog. Electromagn. Res. 52, 81–108 (2005).

[CrossRef]

Z. W. Cui, Y. P. Han, and H. Y. Zhang, “Scattering of an arbitrarily incident focused Gaussian beam by arbitrarily shaped dielectric particles,” J. Opt. Soc. Am. B 28(11), 2625–2632 (2011).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Scattering of Gaussian beam by a spheroidal particle with a spherical inclusion at the center,” Opt. Commun. 284(16–17), 3811–3815 (2011).

[CrossRef]

H. Y. Zhang and T. Q. Liao, “Scattering of Gaussian beam by a spherical particle with a spheroidal inclusion,” J. Quant. Spectrosc. Radiat. Transf. 112(9), 1486–1491 (2011).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33(3), 484–493 (1994).

[CrossRef]
[PubMed]

E. E. Khaled, S. C. Hill, and P. W. Barber, “Light scattering by a coated sphere illuminated with a Gaussian beam,” Appl. Opt. 33(15), 3308–3314 (1994).

[CrossRef]
[PubMed]

D. K. Wu and Y. P. Zhou, “Forward scattering light of droplets containing different size inclusions,” Appl. Opt. 48(15), 2957–2965 (2009).

[CrossRef]
[PubMed]

S. Xian-Ming, W. Hai-Hua, L. Wan-Qiang, and S. Jin, “Light scattering by a spherical particle with multiple densely packed inclusions,” Chin. Phys. B 18(3), 1040–1044 (2009).

[CrossRef]

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99(1), 94–112 (1996).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30(3), 409–418 (1982).

[CrossRef]

S. M. Rao, C. C. Cha, R. L. Cravey, and D. Wilkes, “Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness,” IEEE Trans. Antenn. Propag. 39(5), 627–631 (1991).

[CrossRef]

R. D. Graglia, “On the numerical integration of the linear shape functions times the 3-D green’s function or its gradient on a plane triangle,” IEEE Trans. Antenn. Propag. 41(10), 1448–1455 (1993).

[CrossRef]

D. A. Dunavant, “High degree efficient symmetrical Gaussian quadrature rules for the triangle,” Int. J. Numer. Methods Eng. 21(6), 1129–1148 (1985).

[CrossRef]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66(7), 2800–2802 (1989).

[CrossRef]

Z. W. Cui, Y. P. Han, and M. L. Li, “Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated conducting bodies,” J. Electromagn. Waves Appl. 25(2), 211–222 (2011).

[CrossRef]

A. Macke, M. I. Mishchenko, and B. Cairns, “The influence of inclusions on light scattering by large ice particles,” J. Geophys. Res. 101(D18), 23311–23316 (1996).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47(5), 821–837 (2000).

B. Yan, X. E. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11(1), 015705 (2009).

[CrossRef]

N. C. Skaropoulos, M. P. Ioannidou, and D. P. Chrissoulidis, “Indirect mode-matching solution to scattering from a dielectric sphere with an eccentric inclusion,” J. Opt. Soc. Am. A 11(6), 1859–1866 (1994).

[CrossRef]

F. Borghese, P. Denti, R. Saija, and O. I. Sindoni, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9(8), 1327–1335 (1992).

[CrossRef]

G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12(5), 922–928 (1995).

[CrossRef]

M. P. Ioannidou and D. P. Chrissoulidis, “Electromagnetic-wave scattering by a sphere with multiple spherical inclusions,” J. Opt. Soc. Am. A 19(3), 505–512 (2002).

[CrossRef]
[PubMed]

T. Weigel, J. Schulte, and G. Schweiger, “Inelastic scattering on particles with inclusions,” J. Opt. Soc. Am. A 22(6), 1048–1052 (2005).

[CrossRef]
[PubMed]

A. P. Moneda and D. P. Chrissoulidis, “Dyadic Green’s function of a sphere with an eccentric spherical inclusion,” J. Opt. Soc. Am. A 24(6), 1695–1703 (2007).

[CrossRef]
[PubMed]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz-Mie theory: internal and external field distribution,” J. Opt. Soc. Am. A 28(1), 24–39 (2011).

[CrossRef]
[PubMed]

J. J. Wang, G. Gouesbet, G. Gréhan, Y. P. Han, and S. Saengkaew, “Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam: parallel and perpendicular beam incidence,” J. Opt. Soc. Am. A 28(9), 1849–1859 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, and Q. Xu, “Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams,” J. Opt. Soc. Am. A 28(11), 2200–2208 (2011).

[CrossRef]
[PubMed]

Z. W. Cui, Y. P. Han, and H. Y. Zhang, “Scattering of an arbitrarily incident focused Gaussian beam by arbitrarily shaped dielectric particles,” J. Opt. Soc. Am. B 28(11), 2625–2632 (2011).

[CrossRef]

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25(12), 2064–2072 (2008).

[CrossRef]

H. Y. Zhang and T. Q. Liao, “Scattering of Gaussian beam by a spherical particle with a spheroidal inclusion,” J. Quant. Spectrosc. Radiat. Transf. 112(9), 1486–1491 (2011).

[CrossRef]

M. Mikrenska and P. Koulev, “Simulation of light scattering by large particles with randomly distributed spherical or cubic inclusions,” J. Quant. Spectrosc. Radiat. Transf. 110(14–16), 1411–1417 (2009).

[CrossRef]

D. W. Mackowski, “A simplified model to predict the effects of aggregation on the absorption properties of soot particles,” J. Quant. Spectrosc. Radiat. Transf. 100(1–3), 237–249 (2006).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz-Mie theories through rotations of coordinate systemsIII. Special Euler angles,” Opt. Commun. 283(17), 3235–3243 (2010).

[CrossRef]

B. Yan, H. Y. Zhang, and C. H. Liu, “Scattering of Gaussian beam by a spheroidal particle with a spherical inclusion at the center,” Opt. Commun. 284(16–17), 3811–3815 (2011).

[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18(15), 15876–15886 (2010).

[CrossRef]
[PubMed]

D. R. Prabhu, M. Davies, and G. Videen, “Light scattering calculations from oleic-acid droplets with water inclusions,” Opt. Express 8(6), 308–313 (2001).

[CrossRef]
[PubMed]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general composite metallic and dielectric structures with junctions,” Prog. Electromagn. Res. 52, 81–108 (2005).

[CrossRef]

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, Berlin, 2011).

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles:Ttheory, Measurements, and Applications (Academic, San Diego, 2000).

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, Berlin, 2006).

R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).

L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations (Wiley, 2001).