Abstract

We demonstrate 2688-km multi-span transmission using wavelength-division multiplexing (WDM) of ten 50-GHz spaced 128-Gb/s PDM-QPSK signals, space-division multiplexed (SDM) in a low-crosstalk 76.8-km seven-core fiber, achieving a record net aggregate per-fiber-spectral-efficiency-distance product of 40,320 km⋅b/s/Hz. The demonstration was enabled by a novel core-to-core signal rotation scheme implemented in a 7-fold, synchronized recirculating loop apparatus.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s) SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multicore fiber,” OFC’11, PDPB6.
  2. B. Zhu, T.F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E.M. Monberg, F.V. Dimarcello, K. Abedin, P.W. Wisk D.W. Peckham, and P. Dziedzic, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” OFC’11, PDPB7.
  3. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/sHz aggregate spectral efficiency over a 76.8-km multicore Fiber,” Opt. Express 19, 16665–16671 (2011).
    [CrossRef] [PubMed]
  4. R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs. Tech. J. 14(4), 3–9 (2010).
    [CrossRef]
  5. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmission for optical data links,” Opt. Express 18(11), 11117–11122 (2010).
    [CrossRef]
  6. S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, B. Zhu, T.F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E.M. Monberg, and F.V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km×b/s/Hz,” ECOC'11, paper Th.13.C4.
  7. S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [CrossRef]
  8. F. Chang, “Application aspects of enhanced HD-FEC for 40/100G systems,” ECOC’10, workshop talk WS11–6. See also http://www.vitesse.com/products/download.php?fid=4424&number=VSC9804 .

2011 (1)

2010 (3)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs. Tech. J. 14(4), 3–9 (2010).
[CrossRef]

B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmission for optical data links,” Opt. Express 18(11), 11117–11122 (2010).
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

Chandrasekhar, S.

Dimarcello, F. V.

Fini, J. M.

Fishteyn, M.

Liu, X.

Monberg, E. M.

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

Taunay, T. F.

Tkach, R. W.

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs. Tech. J. 14(4), 3–9 (2010).
[CrossRef]

Yan, M. F.

Zhu, B.

Bell Labs. Tech. J. (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs. Tech. J. 14(4), 3–9 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

Opt. Express (2)

Other (4)

S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, B. Zhu, T.F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E.M. Monberg, and F.V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km×b/s/Hz,” ECOC'11, paper Th.13.C4.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s) SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multicore fiber,” OFC’11, PDPB6.

B. Zhu, T.F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E.M. Monberg, F.V. Dimarcello, K. Abedin, P.W. Wisk D.W. Peckham, and P. Dziedzic, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” OFC’11, PDPB7.

F. Chang, “Application aspects of enhanced HD-FEC for 40/100G systems,” ECOC’10, workshop talk WS11–6. See also http://www.vitesse.com/products/download.php?fid=4424&number=VSC9804 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

MCF with the TMC and photograph of cross-section of the MCF. Also shown is the span loss table. The center core loss was increased with a 3-dB attenuator to match the loss of the other cores.

Fig. 2
Fig. 2

Core-to-core signal rotation concept

Fig. 3
Fig. 3

Schematic of the experimental setup: (a) transmitter; (b) multiple recirculating loops with core-to-core rotation every round trip and (c) coherent receiver. Inset shows transmitter eye diagram.

Fig. 4
Fig. 4

(a) Measured back-to-back BER performance of the 128-Gb/s PDM-QPSK channel at 193.400 THz. Inset: typical recovered signal constellation at an OSNR of 40 dB. (b) Spectra of the 10x128-Gb/s DWDM channels before and after transmission.

Fig. 5
Fig. 5

(a) BER as a function of launch power per core at a distance of 2688 km of the channel at 193.400 THz, measured at the output of each of the seven loops. Inset: typical recovered signal constellation at 2688 km from the output of loop 1. (b) BER performances of the channel at 193.400 THz as a function of distance, measured at the output of each of the sevens loops, with 0-dBm launch power into each core.

Fig. 6
Fig. 6

BER performance of all the ten DWDM channels after transmission over 2688 km (35 spans), measured at the outputs of the seven loops, with 0-dBm launch power into each core.

Metrics