Abstract

Surface-enhanced Raman Scattering (SERS) is studied in sub-wavelength metallic gratings on a substrate using a rigorous electromagnetic approach. In the ultraviolet SERS is limited by the metallic dampening, yet enhancements as large as 105 are predicted. It is shown that these enhancements are directly linked to the spectral position of the plasmonic band edge of the metal/substrate surface plasmon. A simple methodology is presented for selecting the grating pitch to produce optimal enhancement for a given laser frequency.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [CrossRef]
  2. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. Part I. heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
    [CrossRef]
  3. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
    [CrossRef]
  4. K. Kneipp, M. Moskovits, and H. Kneipp, eds., Surface enhanced Raman scattering (Springer, 2006).
  5. K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  6. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Mat. 4(5), 1143–1212 (1992).
    [CrossRef]
  7. M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61(20), 14078–14088 (2000).
    [CrossRef]
  8. M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
    [CrossRef] [PubMed]
  9. F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
    [CrossRef] [PubMed]
  10. D. L. Mills, Nonlinear optics (Springer-Verlag, 1998).
  11. E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal. Chim. Acta 606(2), 119–134 (2008).
    [CrossRef] [PubMed]
  12. S. A. Asher, “UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry,” Annu. Rev. Phys. Chem. 39(1), 537–588 (1988).
    [CrossRef] [PubMed]
  13. A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
    [CrossRef]
  14. T. Dörfer, M. Schmitt, and J. Popp, “Deep UV surface enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
    [CrossRef]
  15. X. Zhou, Y. Fang, and P. Zhang, “A new substrate for surface enhanced Raman scattering of dye Sudan molecules,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(1), 122–124 (2007).
    [CrossRef] [PubMed]
  16. Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
    [CrossRef] [PubMed]
  17. E. D. Palik, Handbook of optical constants of solids (Academic Press Inc., 1991).
  18. H. Raether, Surface plasmons (Springer Tracts in Modern Physics- Berlin, 1988).
  19. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870 (1996).
    [CrossRef]
  20. G. D. Aguanno, N. Mattiucci, M. J Bloemer, D. deCeglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B 28, 253 (2011).
  21. L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon, 1960).
  22. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
    [CrossRef] [PubMed]
  23. C. Kittel, Quantum theory of solids (Wiley, 1963).
  24. Note that the Raman enhancement calculated as the fourth power of the absolute value of the electric field of the pump is just a first order approximation. A more accurate calculation should take into account of the enhancement at the pump frequency ωL and the enhancement at the emitted frequency ωS as Raman-enhancement=〈|E(r→,ωL)/E0|2|E(r→,ωS)/E0|2〉slit. See for example Ref. 4. For more details the reader can consult Ref. 6 and also:S. Franzen, “Intrinsic limitations of the |E|4 dependence of the enhancement factor for surface-enhanced Raman scattering,” J. Phys. Chem. C 113, 5912 (2009).
  25. A. Yariv and P. Yeh, Optical waves in crystals (John Wiley, 1984).
  26. R. K. Hart, “The Oxidation of Aluminium in Dry and Humid Oxygen Atmospheres,” Proc. R. Soc. London, Ser. A 236, 68 (1956).
  27. H. P. Godard, “Oxide Film Growth over Five Years on Some Aluminum Sheet Alloys in Air of Varying Humidity at Room Temperature,” J. Electrochem. Soc. 114(4), 354 (1967).
    [CrossRef]
  28. J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
    [CrossRef] [PubMed]
  29. P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
    [CrossRef] [PubMed]

2011

Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
[CrossRef] [PubMed]

G. D. Aguanno, N. Mattiucci, M. J Bloemer, D. deCeglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B 28, 253 (2011).

2009

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[CrossRef] [PubMed]

Note that the Raman enhancement calculated as the fourth power of the absolute value of the electric field of the pump is just a first order approximation. A more accurate calculation should take into account of the enhancement at the pump frequency ωL and the enhancement at the emitted frequency ωS as Raman-enhancement=〈|E(r→,ωL)/E0|2|E(r→,ωS)/E0|2〉slit. See for example Ref. 4. For more details the reader can consult Ref. 6 and also:S. Franzen, “Intrinsic limitations of the |E|4 dependence of the enhancement factor for surface-enhanced Raman scattering,” J. Phys. Chem. C 113, 5912 (2009).

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[CrossRef]

2008

E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal. Chim. Acta 606(2), 119–134 (2008).
[CrossRef] [PubMed]

2007

T. Dörfer, M. Schmitt, and J. Popp, “Deep UV surface enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[CrossRef]

X. Zhou, Y. Fang, and P. Zhang, “A new substrate for surface enhanced Raman scattering of dye Sudan molecules,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(1), 122–124 (2007).
[CrossRef] [PubMed]

2006

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

2000

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61(20), 14078–14088 (2000).
[CrossRef]

1997

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

1996

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870 (1996).
[CrossRef]

1992

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Mat. 4(5), 1143–1212 (1992).
[CrossRef]

1988

S. A. Asher, “UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry,” Annu. Rev. Phys. Chem. 39(1), 537–588 (1988).
[CrossRef] [PubMed]

1977

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. Part I. heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[CrossRef]

1974

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

1967

H. P. Godard, “Oxide Film Growth over Five Years on Some Aluminum Sheet Alloys in Air of Varying Humidity at Room Temperature,” J. Electrochem. Soc. 114(4), 354 (1967).
[CrossRef]

1956

R. K. Hart, “The Oxidation of Aluminium in Dry and Humid Oxygen Atmospheres,” Proc. R. Soc. London, Ser. A 236, 68 (1956).

Aguanno, G. D.

Akemann, W.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Mat. 4(5), 1143–1212 (1992).
[CrossRef]

Albrecht, M. G.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[CrossRef]

Alù, A.

Ariese, F.

E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal. Chim. Acta 606(2), 119–134 (2008).
[CrossRef] [PubMed]

Asher, S. A.

S. A. Asher, “UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry,” Annu. Rev. Phys. Chem. 39(1), 537–588 (1988).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Bianco, G. V.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[CrossRef] [PubMed]

Bloemer, M. J

Botet, R.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

Brown, A. S.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[CrossRef] [PubMed]

Creighton, J. A.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[CrossRef]

Dasari, R.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

deCeglia, D.

Dieringer, J. A.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Dörfer, T.

T. Dörfer, M. Schmitt, and J. Popp, “Deep UV surface enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[CrossRef]

Efremov, E. V.

E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal. Chim. Acta 606(2), 119–134 (2008).
[CrossRef] [PubMed]

Everitt, H. O.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[CrossRef] [PubMed]

Fang, Y.

X. Zhou, Y. Fang, and P. Zhang, “A new substrate for surface enhanced Raman scattering of dye Sudan molecules,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(1), 122–124 (2007).
[CrossRef] [PubMed]

Feld, M.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Franzen, S.

Note that the Raman enhancement calculated as the fourth power of the absolute value of the electric field of the pump is just a first order approximation. A more accurate calculation should take into account of the enhancement at the pump frequency ωL and the enhancement at the emitted frequency ωS as Raman-enhancement=〈|E(r→,ωL)/E0|2|E(r→,ωS)/E0|2〉slit. See for example Ref. 4. For more details the reader can consult Ref. 6 and also:S. Franzen, “Intrinsic limitations of the |E|4 dependence of the enhancement factor for surface-enhanced Raman scattering,” J. Phys. Chem. C 113, 5912 (2009).

Furusawa, K.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[CrossRef] [PubMed]

George, T. F.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

Godard, H. P.

H. P. Godard, “Oxide Film Growth over Five Years on Some Aluminum Sheet Alloys in Air of Varying Humidity at Room Temperature,” J. Electrochem. Soc. 114(4), 354 (1967).
[CrossRef]

Gooijer, C.

E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal. Chim. Acta 606(2), 119–134 (2008).
[CrossRef] [PubMed]

Grabhorn, H.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Mat. 4(5), 1143–1212 (1992).
[CrossRef]

Hart, R. K.

R. K. Hart, “The Oxidation of Aluminium in Dry and Humid Oxygen Atmospheres,” Proc. R. Soc. London, Ser. A 236, 68 (1956).

Hayazawa, N.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[CrossRef]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Ishitobi, H.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. Part I. heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

Kahl, M.

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61(20), 14078–14088 (2000).
[CrossRef]

Kawata, S.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[CrossRef]

Khoury, C. G.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[CrossRef] [PubMed]

Kim, T.-H.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[CrossRef] [PubMed]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Li, L.

Li, Q.-H.

Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
[CrossRef] [PubMed]

Losurdo, M.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[CrossRef] [PubMed]

Mattiucci, N.

McFarland, A. D.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Moskovits, M.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

Mrozek, I.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Mat. 4(5), 1143–1212 (1992).
[CrossRef]

Otto, A.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Mat. 4(5), 1143–1212 (1992).
[CrossRef]

Pendry, J. B.

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[CrossRef] [PubMed]

Perelman, L.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Popp, J.

T. Dörfer, M. Schmitt, and J. Popp, “Deep UV surface enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Ren, B.

Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
[CrossRef] [PubMed]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Schmitt, M.

T. Dörfer, M. Schmitt, and J. Popp, “Deep UV surface enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[CrossRef]

Shah, N. C.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

Stuart, D. A.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Taguchi, A.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[CrossRef]

Tian, Z.-Q.

Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. Part I. heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

Vincenti, M. A.

Vo-Dinh, T.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[CrossRef] [PubMed]

Voges, E.

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61(20), 14078–14088 (2000).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Whitney, A. V.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Wu, P. C.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[CrossRef] [PubMed]

Yang, Y.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[CrossRef] [PubMed]

Yang, Z.-L.

Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
[CrossRef] [PubMed]

Yonzon, C. R.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Young, M. A.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Zhang, P.

X. Zhou, Y. Fang, and P. Zhang, “A new substrate for surface enhanced Raman scattering of dye Sudan molecules,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(1), 122–124 (2007).
[CrossRef] [PubMed]

Zhang, X.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Zhou, X.

X. Zhou, Y. Fang, and P. Zhang, “A new substrate for surface enhanced Raman scattering of dye Sudan molecules,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(1), 122–124 (2007).
[CrossRef] [PubMed]

Anal. Chim. Acta

E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal. Chim. Acta 606(2), 119–134 (2008).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

S. A. Asher, “UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry,” Annu. Rev. Phys. Chem. 39(1), 537–588 (1988).
[CrossRef] [PubMed]

Chem. Commun. (Camb.)

Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
[CrossRef] [PubMed]

Chem. Phys. Lett.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Faraday Discuss.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[CrossRef] [PubMed]

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[CrossRef]

J. Electroanal. Chem.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. Part I. heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

J. Electrochem. Soc.

H. P. Godard, “Oxide Film Growth over Five Years on Some Aluminum Sheet Alloys in Air of Varying Humidity at Room Temperature,” J. Electrochem. Soc. 114(4), 354 (1967).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. Chem. C

Note that the Raman enhancement calculated as the fourth power of the absolute value of the electric field of the pump is just a first order approximation. A more accurate calculation should take into account of the enhancement at the pump frequency ωL and the enhancement at the emitted frequency ωS as Raman-enhancement=〈|E(r→,ωL)/E0|2|E(r→,ωS)/E0|2〉slit. See for example Ref. 4. For more details the reader can consult Ref. 6 and also:S. Franzen, “Intrinsic limitations of the |E|4 dependence of the enhancement factor for surface-enhanced Raman scattering,” J. Phys. Chem. C 113, 5912 (2009).

J. Phys.: Condens. Mat.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Mat. 4(5), 1143–1212 (1992).
[CrossRef]

J. Raman Spectrosc.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[CrossRef]

T. Dörfer, M. Schmitt, and J. Popp, “Deep UV surface enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[CrossRef]

Phys. Rev. B

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61(20), 14078–14088 (2000).
[CrossRef]

Phys. Rev. B Condens. Matter

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. A

R. K. Hart, “The Oxidation of Aluminium in Dry and Humid Oxygen Atmospheres,” Proc. R. Soc. London, Ser. A 236, 68 (1956).

Spectrochim. Acta A Mol. Biomol. Spectrosc.

X. Zhou, Y. Fang, and P. Zhang, “A new substrate for surface enhanced Raman scattering of dye Sudan molecules,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(1), 122–124 (2007).
[CrossRef] [PubMed]

Other

E. D. Palik, Handbook of optical constants of solids (Academic Press Inc., 1991).

H. Raether, Surface plasmons (Springer Tracts in Modern Physics- Berlin, 1988).

L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon, 1960).

D. L. Mills, Nonlinear optics (Springer-Verlag, 1998).

K. Kneipp, M. Moskovits, and H. Kneipp, eds., Surface enhanced Raman scattering (Springer, 2006).

C. Kittel, Quantum theory of solids (Wiley, 1963).

A. Yariv and P. Yeh, Optical waves in crystals (John Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Propagation length (left y-axis) and effective index (right y-axis) vs. frequency in the UV for a SP at an Al/Al2O3 interface.

Fig. 2
Fig. 2

Geometry: Al metallic grating of thickness d, period Λ and slit aperture a, grown on a sapphire substrate. Inside the slits are positioned generic molecules for SERS. We consider an impinging electromagnetic wave, TM-polarized (H vector parallel to the grooves) with vacuum wavevector k0 incident at an angle ϑ with respect to the z-axis in the (x,z) plane.

Fig. 3
Fig. 3

Left panel: (a-c). Calculated absorption in the (ω,kx) plane using the FMM for three structures with specified periods. The thickness and slit aperture are the same for all cases: d = 50nm and a = 16nm. Superimposed: (continuous lines) dispersion of the unperturbed air/Al and Al/Al2O3 SPs folded along the reciprocal lattice vectors of the grating, and Rayleigh condition for the output medium (KAl2O3-G and G-KAl2O3). The thick-dashed line represents the actual dispersion calculated numerically. Right panel: (d-f). Average Raman enhancement inside the slit for the three structures and the superimposed dispersion (thick-dashed line).

Fig. 4
Fig. 4

Average Raman enhancement at normal incidence (kx = 0) for the three structures.

Fig. 5
Fig. 5

Left panel: (a-c). 2-D view of the absolute value of the electric field in logarithmic scale at the frequencies corresponding respectively to the maximum Raman enhancement for the three structures. Right panel (d-f). 3-D view of the absolute value of the electric field in linear scale. In both panels the position of the “hot spots” is indicated.

Fig. 6
Fig. 6

Dispersion (dashed line) for the structure with Λ = 160nm (upper figure) and with Λ = 128nm (lower figure) calculated through the Bloch vector as in Eq. (3). For comparison, the figures also report the unperturbed dispersion (solid line) of the Al/Al2O3 SP coupled respectively with G and –G.

Fig. 7
Fig. 7

Average Raman enhancement at normal incidence (kx = 0) for the three structures in the case of a) Al grating with a 2nm Al2O3 overlayer and molecules positioned inside the slits; b) Al grating with Al2O3 overlayer and molecules positioned inside the slits and in a region above the grating with h = 20nm; c) Al grating with Al2O3 overlayer and self-assembled monolayer 3nm thick.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L= ( 2Im[ k SP ( ω )] ) 1 and n eff =Re[ k SP / k 0 ],
Ramanenhancement= | E( r )/ E 0 | 4 slit ,
cos( K β Λ)=cos( k a a )cos( k b b ) 1 2 ( n b n a + n a n b )sin( k a a )sin( k b b ),

Metrics