Abstract

We theoretically investigated optical third-order nonlinearity of a coherently coupled exciton-plasmon hybrid system under a strong control field with a weak probe field. The analytic formulas of exciton population and effective third-order optical susceptibility of the hybrid of a metal nanoparticle (MNP) and a semiconductor quantum dot (SQD) were deduced. The bistable exciton population and the induced bistable nonlinear absorption and refraction response were revealed. The bistability region can be tuned by adjusting the size of metal nanoparticle, interparticle distance and intensity of control field. Our results have perspective applications in optical information processing based on resonant coupling of exciton-plasmon.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
    [CrossRef] [PubMed]
  2. N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-Aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11(4), 1556–1560 (2011).
    [CrossRef] [PubMed]
  3. A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7(3), 620–625 (2007).
    [CrossRef] [PubMed]
  4. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [CrossRef] [PubMed]
  5. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
    [CrossRef]
  6. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [CrossRef] [PubMed]
  7. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
    [CrossRef] [PubMed]
  8. G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33(19), 2212–2214 (2008).
    [CrossRef] [PubMed]
  9. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
    [CrossRef] [PubMed]
  10. W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B 84, 081405 (R)(2011).
  11. S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79(23), 233309 (2009).
    [CrossRef]
  12. M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32(15), 2125–2127 (2007).
    [CrossRef] [PubMed]
  13. S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009).
    [CrossRef] [PubMed]
  14. J. Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103(10), 104314 (2008).
    [CrossRef]
  15. R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
    [CrossRef]
  16. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
    [CrossRef]
  17. S. M. Sadeghi, “Tunable nanoswitches based on nanoparticle meta-molecules,” Nanotechnology 21(35), 355501 (2010).
    [CrossRef] [PubMed]
  18. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [CrossRef] [PubMed]
  19. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  20. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  21. J. S. White, G. Veronis, Z. F. Yu, E. S. Barnard, A. Chandran, S. H. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
    [CrossRef] [PubMed]
  22. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
    [CrossRef]
  23. H. M. Gong, X. H. Wang, Y. M. Du, and Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
    [CrossRef] [PubMed]
  24. H. I. Elim, W. Ji, J. Yang, and J. Y. Lee, “Intensity-dependent enhancement of saturable absorption in PbS–Au4 nanohybrid composites: evidence for resonant energy transfer by Auger recombination,” Appl. Phys. Lett. 92(25), 251106 (2008).
    [CrossRef]
  25. X. Zhang and G. G. Xiong, “Metal nanoparticle-induced variation of nonlinear optical susceptibility of a CdTe semiconductor quantum dot,” Physica E 41(7), 1258–1262 (2009).
    [CrossRef]
  26. Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41(18), 185503 (2008).
    [CrossRef]
  27. V. A. Malyshev, H. Glaeske, and K.-H. Feller, “Absence of bistable behavior in the optical response of a dimer,” Phys. Rev. A 58(2), 1496–1500 (1998).
    [CrossRef]
  28. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
    [CrossRef] [PubMed]
  29. R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
    [CrossRef]
  30. A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84(3), 035314 (2011).
    [CrossRef]
  31. H. Wang and K. D. Zhu, “Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator,” Opt. Express 18(15), 16175–16182 (2010).
    [CrossRef] [PubMed]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  33. R. W. Boyd, Nonlinear Optics (Academic, New York, 2008).
  34. B. I. Greene, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61(3), 325–328 (1988).
    [CrossRef] [PubMed]
  35. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
    [CrossRef]

2011 (4)

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-Aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
[CrossRef]

A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84(3), 035314 (2011).
[CrossRef]

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B 84, 081405 (R)(2011).

2010 (3)

H. Wang and K. D. Zhu, “Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator,” Opt. Express 18(15), 16175–16182 (2010).
[CrossRef] [PubMed]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
[CrossRef]

S. M. Sadeghi, “Tunable nanoswitches based on nanoparticle meta-molecules,” Nanotechnology 21(35), 355501 (2010).
[CrossRef] [PubMed]

2009 (6)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009).
[CrossRef] [PubMed]

X. Zhang and G. G. Xiong, “Metal nanoparticle-induced variation of nonlinear optical susceptibility of a CdTe semiconductor quantum dot,” Physica E 41(7), 1258–1262 (2009).
[CrossRef]

J. S. White, G. Veronis, Z. F. Yu, E. S. Barnard, A. Chandran, S. H. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
[CrossRef] [PubMed]

S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79(23), 233309 (2009).
[CrossRef]

2008 (5)

G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33(19), 2212–2214 (2008).
[CrossRef] [PubMed]

Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41(18), 185503 (2008).
[CrossRef]

H. I. Elim, W. Ji, J. Yang, and J. Y. Lee, “Intensity-dependent enhancement of saturable absorption in PbS–Au4 nanohybrid composites: evidence for resonant energy transfer by Auger recombination,” Appl. Phys. Lett. 92(25), 251106 (2008).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

J. Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103(10), 104314 (2008).
[CrossRef]

2007 (6)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7(3), 620–625 (2007).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[CrossRef]

M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32(15), 2125–2127 (2007).
[CrossRef] [PubMed]

2006 (5)

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[CrossRef] [PubMed]

H. M. Gong, X. H. Wang, Y. M. Du, and Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

2003 (1)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

1998 (1)

V. A. Malyshev, H. Glaeske, and K.-H. Feller, “Absence of bistable behavior in the optical response of a dimer,” Phys. Rev. A 58(2), 1496–1500 (1998).
[CrossRef]

1988 (1)

B. I. Greene, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61(3), 325–328 (1988).
[CrossRef] [PubMed]

1981 (1)

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[CrossRef]

Aizpurua, J.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
[CrossRef]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Artemyev, M. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

Artuso, R. D.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Barnard, E. S.

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[CrossRef]

Brongersma, M. L.

Bryant, G. W.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Carmeli, I.

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7(3), 620–625 (2007).
[CrossRef] [PubMed]

Chandran, A.

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[CrossRef] [PubMed]

Chen, G. Y.

Chen, Y. N.

Cheng, M. T.

Chuu, D. S.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Demler, E. A.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[CrossRef]

Du, Y. M.

H. M. Gong, X. H. Wang, Y. M. Du, and Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
[CrossRef] [PubMed]

Duan, S.

J. Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103(10), 104314 (2008).
[CrossRef]

Elim, H. I.

H. I. Elim, W. Ji, J. Yang, and J. Y. Lee, “Intensity-dependent enhancement of saturable absorption in PbS–Au4 nanohybrid composites: evidence for resonant energy transfer by Auger recombination,” Appl. Phys. Lett. 92(25), 251106 (2008).
[CrossRef]

Fan, S. H.

Fan, Z. Y.

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-Aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

Fedutik, Y.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

Feller, K.-H.

V. A. Malyshev, H. Glaeske, and K.-H. Feller, “Absence of bistable behavior in the optical response of a dimer,” Phys. Rev. A 58(2), 1496–1500 (1998).
[CrossRef]

Fofang, N. T.

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-Aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

Garcia-Etxarri, A.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Glaeske, H.

V. A. Malyshev, H. Glaeske, and K.-H. Feller, “Absence of bistable behavior in the optical response of a dimer,” Phys. Rev. A 58(2), 1496–1500 (1998).
[CrossRef]

Gong, H. M.

H. M. Gong, X. H. Wang, Y. M. Du, and Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
[CrossRef] [PubMed]

Govorov, A. O.

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B 84, 081405 (R)(2011).

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-Aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7(3), 620–625 (2007).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Grady, N. K.

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-Aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

Greene, B. I.

B. I. Greene, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61(3), 325–328 (1988).
[CrossRef] [PubMed]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Halas, N. J.

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-Aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

Hao, Z. H.

Harter, D. J.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[CrossRef]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[CrossRef] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Ji, W.

H. I. Elim, W. Ji, J. Yang, and J. Y. Lee, “Intensity-dependent enhancement of saturable absorption in PbS–Au4 nanohybrid composites: evidence for resonant energy transfer by Auger recombination,” Appl. Phys. Lett. 92(25), 251106 (2008).
[CrossRef]

Kotov, N. A.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Lee, J.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Lee, J. Y.

H. I. Elim, W. Ji, J. Yang, and J. Y. Lee, “Intensity-dependent enhancement of saturable absorption in PbS–Au4 nanohybrid composites: evidence for resonant energy transfer by Auger recombination,” Appl. Phys. Lett. 92(25), 251106 (2008).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

Liu, S. D.

Lu, Z. E.

Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41(18), 185503 (2008).
[CrossRef]

Lukin, M. D.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[CrossRef]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[CrossRef] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Malyshev, A. V.

A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84(3), 035314 (2011).
[CrossRef]

Malyshev, V. A.

A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84(3), 035314 (2011).
[CrossRef]

V. A. Malyshev, H. Glaeske, and K.-H. Feller, “Absence of bistable behavior in the optical response of a dimer,” Phys. Rev. A 58(2), 1496–1500 (1998).
[CrossRef]

Mueller, J. F.

B. I. Greene, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61(3), 325–328 (1988).
[CrossRef] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Naik, R. R.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Narum, P.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Orenstein, J.

B. I. Greene, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61(3), 325–328 (1988).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Rapkine, D. H.

B. I. Greene, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61(3), 325–328 (1988).
[CrossRef] [PubMed]

Raymer, M. G.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[CrossRef]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Sadeghi, S. M.

S. M. Sadeghi, “Tunable nanoswitches based on nanoparticle meta-molecules,” Nanotechnology 21(35), 355501 (2010).
[CrossRef] [PubMed]

S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79(23), 233309 (2009).
[CrossRef]

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009).
[CrossRef] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Schmitt-Rink, S.

B. I. Greene, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61(3), 325–328 (1988).
[CrossRef] [PubMed]

Schöps, O.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Skeini, T.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Slocik, J. M.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Temnov, V. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

Thakur, M.

B. I. Greene, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61(3), 325–328 (1988).
[CrossRef] [PubMed]

Veronis, G.

Wang, H.

Wang, Q. Q.

M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32(15), 2125–2127 (2007).
[CrossRef] [PubMed]

H. M. Gong, X. H. Wang, Y. M. Du, and Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
[CrossRef] [PubMed]

Wang, X. H.

H. M. Gong, X. H. Wang, Y. M. Du, and Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
[CrossRef] [PubMed]

White, J. S.

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Woggon, U.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

Xiong, G. G.

X. Zhang and G. G. Xiong, “Metal nanoparticle-induced variation of nonlinear optical susceptibility of a CdTe semiconductor quantum dot,” Physica E 41(7), 1258–1262 (2009).
[CrossRef]

Yan, J. Y.

J. Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103(10), 104314 (2008).
[CrossRef]

Yang, J.

H. I. Elim, W. Ji, J. Yang, and J. Y. Lee, “Intensity-dependent enhancement of saturable absorption in PbS–Au4 nanohybrid composites: evidence for resonant energy transfer by Auger recombination,” Appl. Phys. Lett. 92(25), 251106 (2008).
[CrossRef]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Yu, Z. F.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B 84, 081405 (R)(2011).

J. Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103(10), 104314 (2008).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

X. Zhang and G. G. Xiong, “Metal nanoparticle-induced variation of nonlinear optical susceptibility of a CdTe semiconductor quantum dot,” Physica E 41(7), 1258–1262 (2009).
[CrossRef]

Zhao, X. G.

J. Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103(10), 104314 (2008).
[CrossRef]

Zhou, H. J.

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Zhu, K. D.

H. Wang and K. D. Zhu, “Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator,” Opt. Express 18(15), 16175–16182 (2010).
[CrossRef] [PubMed]

Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41(18), 185503 (2008).
[CrossRef]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. I. Elim, W. Ji, J. Yang, and J. Y. Lee, “Intensity-dependent enhancement of saturable absorption in PbS–Au4 nanohybrid composites: evidence for resonant energy transfer by Auger recombination,” Appl. Phys. Lett. 92(25), 251106 (2008).
[CrossRef]

J. Appl. Phys. (1)

J. Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103(10), 104314 (2008).
[CrossRef]

J. Chem. Phys. (1)

H. M. Gong, X. H. Wang, Y. M. Du, and Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
[CrossRef] [PubMed]

J. Phys. B (1)

Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41(18), 185503 (2008).
[CrossRef]

Nano Lett. (4)

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-Aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7(3), 620–625 (2007).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Nanotechnology (2)

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009).
[CrossRef] [PubMed]

S. M. Sadeghi, “Tunable nanoswitches based on nanoparticle meta-molecules,” Nanotechnology 21(35), 355501 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

Nat. Phys. (1)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[CrossRef]

Nature (3)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (2)

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[CrossRef]

V. A. Malyshev, H. Glaeske, and K.-H. Feller, “Absence of bistable behavior in the optical response of a dimer,” Phys. Rev. A 58(2), 1496–1500 (1998).
[CrossRef]

Phys. Rev. B (5)

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
[CrossRef]

A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84(3), 035314 (2011).
[CrossRef]

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B 84, 081405 (R)(2011).

S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79(23), 233309 (2009).
[CrossRef]

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011).
[CrossRef]

Phys. Rev. Lett. (6)

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[CrossRef] [PubMed]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

B. I. Greene, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61(3), 325–328 (1988).
[CrossRef] [PubMed]

Physica E (1)

X. Zhang and G. G. Xiong, “Metal nanoparticle-induced variation of nonlinear optical susceptibility of a CdTe semiconductor quantum dot,” Physica E 41(7), 1258–1262 (2009).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

R. W. Boyd, Nonlinear Optics (Academic, New York, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the hybrid system driven by a strong control field with amplitude Ec and frequency ωc and probed by a weak signal field with amplitude Es and frequency ωs (Ec >>Es). r and R are the radii of SQD and MNP, respectively. d is the surface-to-surface distance between SQD and MNP. ε0, εs and εm are the dielectric constants of the background medium, SQD and MNP, respectively. (b) Energy level diagram of the system. ω10 and ωsp are the frequencies of exciton and surface plasmon, respectively.

Fig. 2
Fig. 2

Nonlinear absorption Imχeff(3) (a) and refraction Reχeff(3) (b) as a function of the detuning (ωs - ωc)T2 with d = 15 nm and (ω10 - ωc)T2 = 0, 1, 2, 5.

Fig. 3
Fig. 3

(a) Population inversion w0 as a function of interparticle distance between SQD and MNP d for R = 5, 7.5, 10 nm with ωc = ωs and (ω10 - ωc)T2 = 1. (b) Nonlinear absorption Imχeff(3) versus d. (c) Imχeff(3) versus d for R = 7.5 nm in the bistability region of (b). (d) Nonlinear refraction Reχeff(3) versus d. (e) Reχeff(3) versus d for R = 7.5 nm in the bistability region of (d).

Fig. 4
Fig. 4

(a) Population inversion w0 as a function of control field intensity Ωc2 for R = 7.5 nm and d = 12.8 nm with ωc = ωs and (ω10 - ωc)T2 = 1. (b) Nonlinear absorption Imχeff(3) versus Ωc2. (c) Imχeff(3) versus Ωc2 in the bistability region of (b). (d) Nonlinear refraction Reχeff(3) versus Ωc2. (e) Reχeff(3) versus Ωc2 in the bistability region of (d).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H ^ =Δ σ ^ z μ( E ˜ SQD σ ^ 01 + E ˜ SQD σ ^ 10 ),
p ˙ =( 1/ T 2 +iΔ )pi μ 2 E ˜ SQD w/ w ˙ =( w+1 )/ T 1 +4Im( p E ˜ SQD )/,
χ eff ( 3 ) = N p 1 3 ε 0 E c 2 E s = 2N A 3 μ 4 T 2 3 w 0 3 ε 0 3 ( i Δ c )( 2i δ c )[ i+( Δ c + B c w 0 ) ] [ i( Δ c + B c w 0 ) ]D( δ c ) ,
D( δ c )=( δ c i T 2 / T 1 )[ 1+ ( Δ c + B c w 0 ) 2 ][ ( δ c i ) 2 ( Δ c + B c w 0 ) 2 ] +4 A 2 Ω c 2 [ ( i δ c )( 1+ Δ c 2 ) B c w 0 ( i B c w 0 + Δ c δ c ) ] .
w 0 = 4 A 2 Ω c 2 ( T 1 / T 2 ) w 0 / [ 1+ ( Δ c + B c w 0 ) 2 ] 1 .

Metrics