Abstract

A waveguide optical isolator realized by adhesive bonding of a garnet die, containing a Ce:YIG magneto-optic layer, on a silicon-on-insulator waveguide circuit is demonstrated. The die was bonded on top of an asymmetric Mach-Zehnder interferometer using a 100nm thick DVS-BCB adhesive bonding layer. A static magnetic field applied perpendicular to the light propagation direction results in a non-reciprocal phase shift for the fundamental quasi-TM mode in the hybrid waveguide geometry. A maximum optical isolation of 25 dB is obtained.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. E. Stubkjaer and M. B. Small, “Noise properties of semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 20(5), 472–478 (1984).
    [CrossRef]
  2. O. Hirota and Y. Suematsu, “Noise properties of injection lasers due to reflected waves,” IEEE J. Quantum Electron. 15(3), 142–149 (1979).
    [CrossRef]
  3. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 µm distributed feedback lasers,” J. Lightwave Technol. 4(11), 1655–1661 (1986).
    [CrossRef]
  4. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9203 .
    [CrossRef] [PubMed]
  5. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [CrossRef] [PubMed]
  6. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-10-9221 .
    [CrossRef] [PubMed]
  7. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–2232 (2007).
    [CrossRef]
  8. G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14(18), 8154–8159 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8154 .
    [CrossRef] [PubMed]
  9. H. Yokoi, T. Mizumoto, and Y. Shoji, “Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding,” Appl. Opt. 42(33), 6605–6612 (2003).
    [CrossRef] [PubMed]
  10. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
    [CrossRef]
  11. M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-12-11740 .
    [CrossRef] [PubMed]
  12. S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87(12), 121111 (2005).
    [CrossRef]
  13. T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor waveguide isolators,” J. Lightwave Technol. 26(2), 291–301 (2008).
    [CrossRef]
  14. A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optic Materials (Institute of Physics Publishing, 1997).
  15. K. Postava, M. Vanwolleghem, D. Van Thourhout, R. Baets, S. Visnovsky, P. Beauvillain, and J. Pistora, “Modeling of a novel InP-based monolithically integrated magneto-optical waveguide isolator,” J. Opt. Soc. Am. B 22(1), 261–273 (2005).
    [CrossRef]
  16. F. Auracher and H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13(4), 435–438 (1975).
    [CrossRef]
  17. T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
    [CrossRef]
  18. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
    [CrossRef]
  19. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, and P. Hertel, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22(1), 240–253 (2005).
    [CrossRef]
  20. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000).
    [CrossRef] [PubMed]
  21. D. Vermeulen, K. Van Acoleyen, S. Ghosh, S. Selvaraja, W. A. D. De Cort, N. A. Yebo, E. Hallynck, K. De Vos, P. P. P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Van Thourhout and R. Baets, “Efficient tapering to the fundamental quasi-TM mode in asymmetrical waveguides,” ECIO, United Kingdom, p.paper WeP16.
  22. G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of Inp/INGAASP dies to processed Silicon-On-Insulator wafers using DVS-Bis-Benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
    [CrossRef]

2011 (2)

2008 (2)

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor waveguide isolators,” J. Lightwave Technol. 26(2), 291–301 (2008).
[CrossRef]

2007 (1)

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–2232 (2007).
[CrossRef]

2006 (3)

2005 (4)

H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, and P. Hertel, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22(1), 240–253 (2005).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

K. Postava, M. Vanwolleghem, D. Van Thourhout, R. Baets, S. Visnovsky, P. Beauvillain, and J. Pistora, “Modeling of a novel InP-based monolithically integrated magneto-optical waveguide isolator,” J. Opt. Soc. Am. B 22(1), 261–273 (2005).
[CrossRef]

S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87(12), 121111 (2005).
[CrossRef]

2003 (1)

2000 (2)

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000).
[CrossRef] [PubMed]

1986 (2)

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[CrossRef]

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 µm distributed feedback lasers,” J. Lightwave Technol. 4(11), 1655–1661 (1986).
[CrossRef]

1984 (1)

K. E. Stubkjaer and M. B. Small, “Noise properties of semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 20(5), 472–478 (1984).
[CrossRef]

1979 (1)

O. Hirota and Y. Suematsu, “Noise properties of injection lasers due to reflected waves,” IEEE J. Quantum Electron. 15(3), 142–149 (1979).
[CrossRef]

1975 (1)

F. Auracher and H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13(4), 435–438 (1975).
[CrossRef]

Auracher, F.

F. Auracher and H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13(4), 435–438 (1975).
[CrossRef]

Baets, R.

Bahlmann, N.

Bazin, A.

Beauvillain, P.

Bowers, J. E.

Brouckaert, J.

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of Inp/INGAASP dies to processed Silicon-On-Insulator wafers using DVS-Bis-Benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 µm distributed feedback lasers,” J. Lightwave Technol. 4(11), 1655–1661 (1986).
[CrossRef]

Cohen, O.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–2232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9203 .
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Dötsch, H.

H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, and P. Hertel, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22(1), 240–253 (2005).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Fang, A. W.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–2232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9203 .
[CrossRef] [PubMed]

Fujita, J.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Futakuchi, N.

Gerhardt, R.

Guo, X.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Halioua, Y.

Hammer, M.

Harada, T.

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[CrossRef]

Hertel, P.

Hirota, O.

O. Hirota and Y. Suematsu, “Noise properties of injection lasers due to reflected waves,” IEEE J. Quantum Electron. 15(3), 142–149 (1979).
[CrossRef]

Hsieh, I. W.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

Jones, R.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–2232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9203 .
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Karle, T. J.

Kromer, H.

Levy, M.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Mizumoto, T.

Monnier, P.

Naito, Y.

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[CrossRef]

Nakano, Y.

Nötzel, R.

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of Inp/INGAASP dies to processed Silicon-On-Insulator wafers using DVS-Bis-Benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[CrossRef]

G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14(18), 8154–8159 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8154 .
[CrossRef] [PubMed]

Oochi, K.

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[CrossRef]

Osgood, R. M.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Paniccia, M. J.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–2232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9203 .
[CrossRef] [PubMed]

Park, H.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–2232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9203 .
[CrossRef] [PubMed]

Pintus, P.

Pistora, J.

Postava, K.

Qi, X.

S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87(12), 121111 (2005).
[CrossRef]

Raineri, F.

Raj, R.

Ram, R. J.

Roelkens, G.

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Sagnes, I.

Shinjo, N.

Shoji, Y.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

H. Yokoi, T. Mizumoto, and Y. Shoji, “Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding,” Appl. Opt. 42(33), 6605–6612 (2003).
[CrossRef] [PubMed]

Small, M. B.

K. E. Stubkjaer and M. B. Small, “Noise properties of semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 20(5), 472–478 (1984).
[CrossRef]

Smit, M.

G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14(18), 8154–8159 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8154 .
[CrossRef] [PubMed]

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of Inp/INGAASP dies to processed Silicon-On-Insulator wafers using DVS-Bis-Benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[CrossRef]

Stadler, B. J. H.

S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87(12), 121111 (2005).
[CrossRef]

Stubkjaer, K. E.

K. E. Stubkjaer and M. B. Small, “Noise properties of semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 20(5), 472–478 (1984).
[CrossRef]

Suematsu, Y.

O. Hirota and Y. Suematsu, “Noise properties of injection lasers due to reflected waves,” IEEE J. Quantum Electron. 15(3), 142–149 (1979).
[CrossRef]

Sung, S. Y.

S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87(12), 121111 (2005).
[CrossRef]

Tien, M. C.

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 µm distributed feedback lasers,” J. Lightwave Technol. 4(11), 1655–1661 (1986).
[CrossRef]

Van Thourhout, D.

Vanwolleghem, M.

Visnovsky, S.

Wilkens, L.

H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, and P. Hertel, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22(1), 240–253 (2005).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Witte, H. H.

F. Auracher and H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13(4), 435–438 (1975).
[CrossRef]

Yokoi, H.

Zaman, T. R.

Zhuromskyy, O.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87(12), 121111 (2005).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. E. Stubkjaer and M. B. Small, “Noise properties of semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 20(5), 472–478 (1984).
[CrossRef]

O. Hirota and Y. Suematsu, “Noise properties of injection lasers due to reflected waves,” IEEE J. Quantum Electron. 15(3), 142–149 (1979).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–2232 (2007).
[CrossRef]

J. Electrochem. Soc. (1)

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of Inp/INGAASP dies to processed Silicon-On-Insulator wafers using DVS-Bis-Benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[CrossRef]

J. Lightwave Technol. (3)

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[CrossRef]

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 µm distributed feedback lasers,” J. Lightwave Technol. 4(11), 1655–1661 (1986).
[CrossRef]

T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor waveguide isolators,” J. Lightwave Technol. 26(2), 291–301 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

F. Auracher and H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13(4), 435–438 (1975).
[CrossRef]

Opt. Express (4)

Other (2)

A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optic Materials (Institute of Physics Publishing, 1997).

D. Vermeulen, K. Van Acoleyen, S. Ghosh, S. Selvaraja, W. A. D. De Cort, N. A. Yebo, E. Hallynck, K. De Vos, P. P. P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Van Thourhout and R. Baets, “Efficient tapering to the fundamental quasi-TM mode in asymmetrical waveguides,” ECIO, United Kingdom, p.paper WeP16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Slab waveguide stack and (b) simulation of the nonreciprocal phase shift as a function of silicon waveguide thickness and DVS-BCB bonding layer thickness.

Fig. 2
Fig. 2

Insertion loss and reflection at the interface between a plain SOI waveguide and a Ce: YIG on SOI waveguide as a function of DVS-BCB bonding layer thickness.

Fig. 3
Fig. 3

(a) Contour plot of E x 0 field of the quasi-TM polarized mode (b) field enhancement in the DVS-BCB bonding layer due to a vertical slot waveguide effect.

Fig. 4
Fig. 4

Schematic of the proposed optical isolator consisting of a Mach-Zehnder interferometer covered by Ce:YIG; (a) top view and (b) cross- section view.

Fig. 5
Fig. 5

Nonreciprocal phase shift as a function of Ce:YIG layer thickness for a 220nm thick silicon waveguide layer thickness and different DVS-BCB bonding layer thicknesses.

Fig. 6
Fig. 6

Schematic illustration of the bonding procedure.

Fig. 7
Fig. 7

Photograph of the Ce:YIG/SGGG die bonded to an SOI waveguide circuit (a) and an SEM cross-section image of the bonded stack (b).

Fig. 8
Fig. 8

Schematic diagram of measurement set up and magnet stack.

Fig. 9
Fig. 9

Normalized MZI transmission spectra for forward and backward propagation.

Fig. 10
Fig. 10

Normalized transmission spectra of the MZI for different angular orientations of magnetic field with respect to the light propagation direction: (a) 90°, (b) 0°, (c) 270°, (d) 180°.

Fig. 11
Fig. 11

(a) Nonreciprocal wavelength shift as a function of (h2 + l2)-3/2, where h is the distance between the magnet and the Ce:YIG layer and 2l is the distance between the two poles of the magnet stack. Negative values for (h2 + l2)-3/2 indicate that the magnet was rotated 180 degrees, (b) magnetization curve of the Ce:YIG layer after subtracting the contribution from the paramagnetic SGGG substrate.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε=( n 2 0 j ε xz 0 n 2 0 j ε xz 0 n 2 )
NRPS= β Forward β Backward =jω ε 0 ε xz (x,y) E x 0 E z 0 dxdy [ E x 0 H y 0 E y 0 H x 0 ]dxdy

Metrics