Abstract

We present an innovative grating design based on conical diffraction which acts as an almost perfect and low-loss beamsplitter for extreme ultraviolet radiation. The scheme is based on a binary profile operated in grazing incidence along the grating bars under total external reflection. It is shown that periods of a few 102 nm may permit an exclusive (±1)st order diffraction with efficiencies up to ∼ 35% in each of them, whereas higher evanescent orders vanish. In contrast, destructive interference eliminates the 0th order. For a sample made of SiO2 on silicon, measured data and simulated results from rigorous coupled wave analysis procedures are given.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, and J. J. Rocca, “Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings,” Opt. Lett. 25, 356–358 (2000).
    [CrossRef]
  2. J. Grava, M. A. Purvis, J. Filevich, M. C. Marconi, J. J. Rocca, J. Dunn, S. J. Moon, and V. N. Shlyaptsev, “Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry,” Phys. Rev. E 78, 016403 (2008).
    [CrossRef]
  3. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
    [CrossRef]
  4. Y. Liu, X. Tan, Z. Liu, X. Xu, Y. Hong, and S. Fu, “Soft X-ray holographic grating beam splitter including a double frequency grating for interferometer pre-alignment,” Opt. Express 16, 14761–14770 (2008).
    [CrossRef] [PubMed]
  5. Y. Liu, H.-J. Fuchs, Z. Liu, H. Chen, S. He, S. Fu, E.-B. Kley, and A. Tünnermann, “Investigation on the properties of a laminar grating as a soft X-ray beam splitter,” Appl. Opt. 49, 4450–4459 (2010).
    [CrossRef] [PubMed]
  6. J. E. Harvey and C. L. Vernold, “Description of diffraction grating behavior in direction cosine space,” Appl. Opt. 37, 8158–8160 (1998).
    [CrossRef]
  7. D. Attwood, Soft X-rays and extreme ultraviolet radiation (Cambridge Univ. Press, 1999).
  8. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
    [CrossRef]
  9. M. Morita, T. Ohmi, E Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68(3), 1272–1281 (1990).
    [CrossRef]
  10. L. G. Parratt, “Surface studies of solids by total reflection of X-rays,” Phys. Rev. 95, 359–369 (1954).
    [CrossRef]
  11. Lawrence Berkeley National Laboratory’s Center for X-ray optics, Mail Stop 2R0400, 1 Cyclotron Road Berkeley, CA 94720 USA, http://henke.lbl.gov (2011).
  12. P. Lemaire, “Ultraviolet conical diffraction: a near-stigmatic tandem grating mounting spectrometer,” Appl. Opt. 30, 1294–1302 (1991).
    [CrossRef] [PubMed]
  13. Y.-Y. Yang, F. Süßmann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1954–1962 (2011).
    [CrossRef] [PubMed]
  14. R. K. Heilmann, M. Ahn, E. M. Gullikson, and M. L. Schattenburg, “Blazed high-efficiency x-ray diffraction via transmission through arrays of nanometer-scale mirrors,” Opt. Express 16, 8658–8669 (2008).
    [CrossRef] [PubMed]
  15. J. Tümmler, G. Brandt, J. Eden, H. Scherr, F. Scholze, and G. Ulm, “Characterization of the PTB EUV reflectometry facility for large EUVL optical components,” Proc. SPIE 5037, 265–273 (2003).
    [CrossRef]
  16. F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
    [CrossRef]
  17. B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246, 1415–1434 (2009).
    [CrossRef]

2011 (1)

2010 (1)

2009 (1)

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246, 1415–1434 (2009).
[CrossRef]

2008 (3)

2003 (1)

J. Tümmler, G. Brandt, J. Eden, H. Scherr, F. Scholze, and G. Ulm, “Characterization of the PTB EUV reflectometry facility for large EUVL optical components,” Proc. SPIE 5037, 265–273 (2003).
[CrossRef]

2000 (2)

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, and J. J. Rocca, “Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings,” Opt. Lett. 25, 356–358 (2000).
[CrossRef]

1998 (1)

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[CrossRef]

1991 (1)

1990 (1)

M. Morita, T. Ohmi, E Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68(3), 1272–1281 (1990).
[CrossRef]

1983 (1)

1954 (1)

L. G. Parratt, “Surface studies of solids by total reflection of X-rays,” Phys. Rev. 95, 359–369 (1954).
[CrossRef]

Ahn, M.

Attwood, D.

D. Attwood, Soft X-rays and extreme ultraviolet radiation (Cambridge Univ. Press, 1999).

Beckhoff, B.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246, 1415–1434 (2009).
[CrossRef]

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Bijkerk, F.

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Brandt, G.

J. Tümmler, G. Brandt, J. Eden, H. Scherr, F. Scholze, and G. Ulm, “Characterization of the PTB EUV reflectometry facility for large EUVL optical components,” Proc. SPIE 5037, 265–273 (2003).
[CrossRef]

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Chen, H.

Chilla, J. L. A.

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[CrossRef]

Duan, X.-M.

Dunn, J.

J. Grava, M. A. Purvis, J. Filevich, M. C. Marconi, J. J. Rocca, J. Dunn, S. J. Moon, and V. N. Shlyaptsev, “Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry,” Phys. Rev. E 78, 016403 (2008).
[CrossRef]

Eden, J.

J. Tümmler, G. Brandt, J. Eden, H. Scherr, F. Scholze, and G. Ulm, “Characterization of the PTB EUV reflectometry facility for large EUVL optical components,” Proc. SPIE 5037, 265–273 (2003).
[CrossRef]

Filevich, J.

J. Grava, M. A. Purvis, J. Filevich, M. C. Marconi, J. J. Rocca, J. Dunn, S. J. Moon, and V. N. Shlyaptsev, “Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry,” Phys. Rev. E 78, 016403 (2008).
[CrossRef]

J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, and J. J. Rocca, “Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings,” Opt. Lett. 25, 356–358 (2000).
[CrossRef]

Fill, E.

Fliegauf, R.

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Fu, S.

Fuchs, H.-J.

Gaylord, T. K.

Gottwald, A.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246, 1415–1434 (2009).
[CrossRef]

Grava, J.

J. Grava, M. A. Purvis, J. Filevich, M. C. Marconi, J. J. Rocca, J. Dunn, S. J. Moon, and V. N. Shlyaptsev, “Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry,” Phys. Rev. E 78, 016403 (2008).
[CrossRef]

Gullikson, E. M.

R. K. Heilmann, M. Ahn, E. M. Gullikson, and M. L. Schattenburg, “Blazed high-efficiency x-ray diffraction via transmission through arrays of nanometer-scale mirrors,” Opt. Express 16, 8658–8669 (2008).
[CrossRef] [PubMed]

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[CrossRef]

Harvey, J. E.

Hasegawa, E

M. Morita, T. Ohmi, E Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68(3), 1272–1281 (1990).
[CrossRef]

He, S.

Heilmann, R. K.

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[CrossRef]

Hong, Y.

Kanizay, K.

Kaster, J.

Kawakami, M.

M. Morita, T. Ohmi, E Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68(3), 1272–1281 (1990).
[CrossRef]

Klein, R.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246, 1415–1434 (2009).
[CrossRef]

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Kley, E.-B.

Kling, M. F.

Krausz, F.

Krumrey, M.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246, 1415–1434 (2009).
[CrossRef]

Lehr, D.

Lemaire, P.

Liu, Y.

Liu, Z.

Louis, E.

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Marconi, M. C.

J. Grava, M. A. Purvis, J. Filevich, M. C. Marconi, J. J. Rocca, J. Dunn, S. J. Moon, and V. N. Shlyaptsev, “Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry,” Phys. Rev. E 78, 016403 (2008).
[CrossRef]

J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, and J. J. Rocca, “Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings,” Opt. Lett. 25, 356–358 (2000).
[CrossRef]

Meyer, B.

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Moharam, M. G.

Moon, S. J.

J. Grava, M. A. Purvis, J. Filevich, M. C. Marconi, J. J. Rocca, J. Dunn, S. J. Moon, and V. N. Shlyaptsev, “Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry,” Phys. Rev. E 78, 016403 (2008).
[CrossRef]

Morita, M.

M. Morita, T. Ohmi, E Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68(3), 1272–1281 (1990).
[CrossRef]

Müller, R.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246, 1415–1434 (2009).
[CrossRef]

Oestreich, S.

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Ohmi, T.

M. Morita, T. Ohmi, E Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68(3), 1272–1281 (1990).
[CrossRef]

Ohwada, M.

M. Morita, T. Ohmi, E Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68(3), 1272–1281 (1990).
[CrossRef]

Parratt, L. G.

L. G. Parratt, “Surface studies of solids by total reflection of X-rays,” Phys. Rev. 95, 359–369 (1954).
[CrossRef]

Pupeza, I.

Purvis, M. A.

J. Grava, M. A. Purvis, J. Filevich, M. C. Marconi, J. J. Rocca, J. Dunn, S. J. Moon, and V. N. Shlyaptsev, “Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry,” Phys. Rev. E 78, 016403 (2008).
[CrossRef]

Richter, M.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246, 1415–1434 (2009).
[CrossRef]

Rocca, J. J.

J. Grava, M. A. Purvis, J. Filevich, M. C. Marconi, J. J. Rocca, J. Dunn, S. J. Moon, and V. N. Shlyaptsev, “Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry,” Phys. Rev. E 78, 016403 (2008).
[CrossRef]

J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, and J. J. Rocca, “Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings,” Opt. Lett. 25, 356–358 (2000).
[CrossRef]

Rost, D.

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Schattenburg, M. L.

Scherr, H.

J. Tümmler, G. Brandt, J. Eden, H. Scherr, F. Scholze, and G. Ulm, “Characterization of the PTB EUV reflectometry facility for large EUVL optical components,” Proc. SPIE 5037, 265–273 (2003).
[CrossRef]

Schmitz, D.

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Scholze, F.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246, 1415–1434 (2009).
[CrossRef]

J. Tümmler, G. Brandt, J. Eden, H. Scherr, F. Scholze, and G. Ulm, “Characterization of the PTB EUV reflectometry facility for large EUVL optical components,” Proc. SPIE 5037, 265–273 (2003).
[CrossRef]

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Shlyaptsev, V. N.

J. Grava, M. A. Purvis, J. Filevich, M. C. Marconi, J. J. Rocca, J. Dunn, S. J. Moon, and V. N. Shlyaptsev, “Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry,” Phys. Rev. E 78, 016403 (2008).
[CrossRef]

Stebbings, S. L.

Süßmann, F.

Tan, X.

Thornagel, R.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246, 1415–1434 (2009).
[CrossRef]

Tümmler, J.

J. Tümmler, G. Brandt, J. Eden, H. Scherr, F. Scholze, and G. Ulm, “Characterization of the PTB EUV reflectometry facility for large EUVL optical components,” Proc. SPIE 5037, 265–273 (2003).
[CrossRef]

Tünnermann, A.

Ulm, G.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246, 1415–1434 (2009).
[CrossRef]

J. Tümmler, G. Brandt, J. Eden, H. Scherr, F. Scholze, and G. Ulm, “Characterization of the PTB EUV reflectometry facility for large EUVL optical components,” Proc. SPIE 5037, 265–273 (2003).
[CrossRef]

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Veldkamp, M.

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Vernold, C. L.

Weser, J.

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Xu, X.

Yakshin, A.E.

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Yang, Y.-Y.

Zhao, Z.-S.

Zherebtsov, S.

Appl. Opt. (3)

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[CrossRef]

J. Appl. Phys. (1)

M. Morita, T. Ohmi, E Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68(3), 1272–1281 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

L. G. Parratt, “Surface studies of solids by total reflection of X-rays,” Phys. Rev. 95, 359–369 (1954).
[CrossRef]

Phys. Rev. E (1)

J. Grava, M. A. Purvis, J. Filevich, M. C. Marconi, J. J. Rocca, J. Dunn, S. J. Moon, and V. N. Shlyaptsev, “Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry,” Phys. Rev. E 78, 016403 (2008).
[CrossRef]

Phys. Status Solidi B (1)

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246, 1415–1434 (2009).
[CrossRef]

Proc. SPIE (2)

J. Tümmler, G. Brandt, J. Eden, H. Scherr, F. Scholze, and G. Ulm, “Characterization of the PTB EUV reflectometry facility for large EUVL optical components,” Proc. SPIE 5037, 265–273 (2003).
[CrossRef]

F. Scholze, B. Beckhoff, G. Brandt, R. Fliegauf, R. Klein, B. Meyer, D. Rost, D. Schmitz, M. Veldkamp, J. Weser, G. Ulm, E. Louis, A.E. Yakshin, S. Oestreich, and F. Bijkerk, “The new PTB-beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72—82 (2000).
[CrossRef]

Other (2)

Lawrence Berkeley National Laboratory’s Center for X-ray optics, Mail Stop 2R0400, 1 Cyclotron Road Berkeley, CA 94720 USA, http://henke.lbl.gov (2011).

D. Attwood, Soft X-rays and extreme ultraviolet radiation (Cambridge Univ. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Direction cosine space for conical diffraction from reflection gratings for the general case (left) and a beamsplitter in grazing incidence (right). Figures are on the basis of [6].

Fig. 2
Fig. 2

Calculated grazing incidence reflectivity of infinitely thick layers made of Si (left) and SiO2 (right) for s-like polarization and vanishing roughness, based on the Fresnel formulae. The encircled cross indicates the design parameters of the sample in use.

Fig. 3
Fig. 3

Optimization of groove depth Δt (left) and duty cycle f (right) using RCWA procedures. In each case, the complementary best-fit value is assumed for Δt and f, respectively.

Fig. 4
Fig. 4

Geometry of conical diffraction in grazing incidence for the sample in use. For clarity, the dimensions of the reflection grating and the diffraction angles are not to scale.

Fig. 5
Fig. 5

Fabrication of binary reflection gratings from an SiO2 coating (blue) on polished Si (light green). The Cr mask is colored in red and the FEP 171 resist layer is drawn in gray.

Fig. 6
Fig. 6

SEM pictures of the grating sample with a period of 400 nm. (a) E-beam structured FEP 171 resist with rate action (light gray) after development (b) Cr metal hard mask on SiO2 after RIE etching (c) RIBE etched SiO2 bars after mask removal on the Si substrate.

Fig. 7
Fig. 7

Three-dimensional view of the structure as recorded by an AFM. From the zoom shown in the upper right, the RMS surface roughness of the SiO2 layer is found as 0.6 nm.

Fig. 8
Fig. 8

Polarization properties of the diffracted field for the (−1)st (left), 0th (middle) and (+1)st order (right) in polar coordinates. The positive amplitude A⃗m is defined as the excess to the total minimum of the corresponding field within 0 ≤ϑ < 2π. See text for details.

Fig. 9
Fig. 9

Angular error budget of the sample in use with λ = 25 nm from RCWA simulations. The efficiencies are sketched for tilt angles δψ and incidence angles ϕ0. See text for details.

Fig. 10
Fig. 10

Wavelength-dependent diffraction efficiencies between 21 nm and 29 nm, calculated using RCWA. The singularity of the 0th order at λ = 25 nm is not shown here.

Fig. 11
Fig. 11

Measured incident beam shape in horizontal (x-) and vertical (z-) direction. The intensity profile (blue curve) results from the first derivative of the knife edge scan (black).

Fig. 12
Fig. 12

Top view of the DCS for tilt angles δψ in the beamsplitter configuration. The intersection points with the upper half sphere (black dots) determine the positions of the diffracted spots in the local coordinate system of the detector, oriented around the α-axis.

Fig. 13
Fig. 13

Diffraction patterns including the (±1)st order for tilts δψ. Semi-analytical predictions for the spot positions ±1(δψ) and RCWA results for P0,±1 are shown in light brown. Angles θ 0 ( ± ) ( ± 0.0 ° ) and cones for δψ = ±0.0° are drawn as a guide to the eye.

Fig. 14
Fig. 14

Efficiency of the (±1)st order, obtained from RCWA calculations on the basis of the grating data from Tab. 1 and a nearly constant aspect ratio �� = 0.47 along the red line.

Fig. 15
Fig. 15

Diffraction efficiency of the 0th order. The contours on the left are directly plotted for the implemented duty cycle series and measured data. RCWA results are shown on the right for comparison, assuming groove depths deduced from the experimental data set.

Tables (2)

Tables Icon

Table 1 Minimum of the 0th order for the duty cycle series. The groove thickness Δtsim is found from RCWA runs, using the measured angular positions ϕ0 for the minimum of P0.

Tables Icon

Table 2 Theoretical maximum of the (±1)st order with its error range for the duty cycle series obtained from RCWA calculations. The grating parameters are the same as in Tab. 1. In the 3rd row, the predicted power ratio between the (±1)st and the 0th order is given.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

α x | r | and β y | r | and γ z | r | with α 2 + β 2 + γ 2 = 1 .
α i = sin θ 0 cos ϕ 0 and β i = sin ϕ 0 and γ i = + cos θ 0 cos ϕ 0 ,
α m + α i = m λ / d with α m = sin θ m cos ϕ 0 and β m + β i = 0 with β m = sin ϕ 0 ,
sin θ m cos ϕ 0 = ( m λ / d ) sin ψ for | m max | m + | m max | .
P m ( ϑ ) = P ˜ m sin 2 ( ϑ ϑ ˜ m ) + P m ° with P ˜ m = | A m ( ϑ ˜ m + π / 2 ) | .
sin θ m = 1 cos ϕ 0 m λ d sin ψ and sin ϕ m = sin ϕ 0 m λ d cos ψ ,
sin θ m 1 cos ϕ 0 m λ d and sin ϕ m sin ϕ 0 ± m λ d δ ψ with | m | 1 .
P 1 = 33.03 % and P + 1 = 33.04 % for δ ψ = 0 °

Metrics