Abstract

Residual stresses inside optical fibers can impact significantly on Brillouin spectrum properties. We have analyzed the importance of internal stresses on the Brillouin Gain Spectrum (BGS) for a conventional G.652 fiber and compared modeling results to measurements. Then the residual internal stresses have been investigated for a set of trench-assisted fibers: fibers are coming from a single preform with different draw tensions. Numerical modeling based on measured internal stresses profiles are compared with corresponding BGS experimental results. Clearly, Brillouin spectrum is shifted linearly versus draw tension with a coefficient of −20MHz/100g and its linewidth increases.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
    [CrossRef]
  2. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-14-5338 .
    [CrossRef] [PubMed]
  3. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
    [CrossRef]
  4. W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
    [CrossRef]
  5. W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
    [CrossRef]
  6. Y. Sikali Mamdem, X. Pheron, F. Taillade, Y. Jaouën, R. Gabet, V. Lanticq, G. Moreau, A. Boukenter, Y. Ouerdane, S. Lesoille, and J. Bertrand, “Two-dimensional FEM analysis of Brillouin Gain Spectra in acoustic guiding and antiguiding single mode optical fibers,” in Proceedings of COMSOL Multiphysics Conference (session Acoustic II, Paris, 2010), 111–124.
  7. Y. Sikali Mamdem, E. Burov, L.-A de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” ECOC 2011, paper We.10.P1.16, Geneva, Sept. 2011.
  8. A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
    [CrossRef] [PubMed]
  9. L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
    [CrossRef]
  10. S. Dasgupta, F. Poletti, S. Liu, P. Petropoulos, D. J. Richardson, L. Grüner-Nielsen, and S. Herstrøm, “Modeling Brillouin Gain Spectrum of solid and microstructured optical fibers using a finite element method,” J. Lightwave Technol. 29(1), 22–30 (2011).
    [CrossRef]
  11. C. A. S. de Oliveira, C. K. Jen, A. Shang, and C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shifts,” J. Opt. Soc. Am. B 10(6), 969–971 (1993).
    [CrossRef]
  12. G. W. Scherer, “Stress-induced index profile distortion in optical waveguides,” Appl. Opt. 19(12), 2000–2006 (1980).
    [CrossRef] [PubMed]
  13. S. Chaki and G. Bourse, “Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands,” Ultrasonics 49(2), 162–171 (2009).
    [CrossRef] [PubMed]
  14. R. Le Parc, “Diffusion de rayonnement et relaxation structurale dans les verres de silice et les préformes de fibres optiques,” PhD thesis (Claude Bernard University, Lyon-1, 2002).
  15. F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
    [CrossRef] [PubMed]
  16. V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, and G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett. 34(7), 1018–1020 (2009).
    [CrossRef] [PubMed]
  17. L.-A. de Montmorillon, P. Matthijsse, F. Gooijer, D. Molin, F. Achten, X. Meersseman, and C. Legrand, “Next Generation SMF with Reduced Bend Sensitivity for FTTH Networks,” in Proceedings of ECOC Conference (Cannes, France, paper Mo.3.3.2, 2006).
  18. P. K. Bachmann, W. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 2: Fibers,” Appl. Opt. 26(7), 1175–1182 (1987).
    [CrossRef] [PubMed]
  19. F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
    [CrossRef]

2011 (1)

2009 (3)

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

S. Chaki and G. Bourse, “Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands,” Ultrasonics 49(2), 162–171 (2009).
[CrossRef] [PubMed]

V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, and G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett. 34(7), 1018–1020 (2009).
[CrossRef] [PubMed]

2007 (1)

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

2006 (1)

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

2005 (1)

2004 (3)

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
[CrossRef]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[CrossRef]

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

1996 (1)

F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
[CrossRef] [PubMed]

1993 (1)

1987 (1)

1986 (1)

A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

1980 (1)

Agrawal, G. P.

Bachmann, P. K.

Bickham, S.

Boissier, M.

F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
[CrossRef] [PubMed]

Bourse, G.

S. Chaki and G. Bourse, “Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands,” Ultrasonics 49(2), 162–171 (2009).
[CrossRef] [PubMed]

Chaki, S.

S. Chaki and G. Bourse, “Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands,” Ultrasonics 49(2), 162–171 (2009).
[CrossRef] [PubMed]

Cherif, R.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Chowdhury, D. Q.

Chujo, W.

Codemard, C.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Dasgupta, S.

de Oliveira, C. A. S.

Douay, M.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Dürr, F.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Farnell, G. W.

A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

Fertein, E.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Gabet, R.

Grüner-Nielsen, L.

He, Z.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

Hermann, W.

Herstrøm, S.

Hindle, F.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Hotate, K.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

Jaouën, Y.

Jen, C. K.

Jen, C.-K.

A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

Jiang, S.

Kobyakov, A.

Koyamada, Y.

Kumar, S.

Lanticq, V.

Levelut, C.

F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
[CrossRef] [PubMed]

Limberger, H. G.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Liu, S.

Maran, J.-N.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Mishra, R.

Moreau, G.

Nakamura, S.

Pelous, J.

F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
[CrossRef] [PubMed]

Petropoulos, P.

Poletti, F.

Przygodzki, C.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Richardson, D. J.

Ruffin, A. B.

Safaai-Jazi, A.

A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

Salathé, R. P.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Saravanos, C.

Sato, S.

Sauer, M.

Scherer, G. W.

Shang, A.

Sotobayashi, H.

Taillade, F.

Tartara, L.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Terki, F.

F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
[CrossRef] [PubMed]

Wehr, H.

Wiechert, D. U.

Yablon, A. D.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[CrossRef]

Zghal, M.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Zou, W.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (1)

F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter 53(5), 2411–2418 (1996).
[CrossRef] [PubMed]

Ultrasonics (1)

S. Chaki and G. Bourse, “Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands,” Ultrasonics 49(2), 162–171 (2009).
[CrossRef] [PubMed]

Other (4)

R. Le Parc, “Diffusion de rayonnement et relaxation structurale dans les verres de silice et les préformes de fibres optiques,” PhD thesis (Claude Bernard University, Lyon-1, 2002).

L.-A. de Montmorillon, P. Matthijsse, F. Gooijer, D. Molin, F. Achten, X. Meersseman, and C. Legrand, “Next Generation SMF with Reduced Bend Sensitivity for FTTH Networks,” in Proceedings of ECOC Conference (Cannes, France, paper Mo.3.3.2, 2006).

Y. Sikali Mamdem, X. Pheron, F. Taillade, Y. Jaouën, R. Gabet, V. Lanticq, G. Moreau, A. Boukenter, Y. Ouerdane, S. Lesoille, and J. Bertrand, “Two-dimensional FEM analysis of Brillouin Gain Spectra in acoustic guiding and antiguiding single mode optical fibers,” in Proceedings of COMSOL Multiphysics Conference (session Acoustic II, Paris, 2010), 111–124.

Y. Sikali Mamdem, E. Burov, L.-A de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” ECOC 2011, paper We.10.P1.16, Geneva, Sept. 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental set-up for the measurement of Brillouin spectrum.

Fig. 2
Fig. 2

Measured G.652 profiles: (a) index profile, (b) stress profile.

Fig. 3
Fig. 3

G.652 stress impact: (a) Acousto-optic overlap integral with or without considering residual stresses, (b) L01 and L02 modes profiles with or without taking residual stresses into account.

Fig. 4
Fig. 4

Comparison of G.652’s BGS model with (w), without (w/o) stress and measurement.

Fig. 5
Fig. 5

Trench-assisted step index structure.

Fig. 6
Fig. 6

BGS comparisons: (a) Measured and simulated BGS with and without stress of fiber drawn with 90g, (b) Measured and simulated (with stress) BGS for different values of draw tension.

Fig. 7
Fig. 7

Evolution with draw tension of: (a) Measured Brillouin frequency shift versus draw tension, (b) BGS FWHM versus draw tension.

Tables (1)

Tables Icon

Table 1 Influence of Doping Concentrations on Optical and Acoustic Properties of Fibers Parameters [10]

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ t 2 E+ ( 2π λ 0 ) 2 ( n 2 n eff 2 )E=0
Δ t 2 u m +( Ω m 2 V L 2 β acoust 2 ) u m =0
BGS(ν)= m I m ao ( Γ/2 ) 2 ( Γ/2 ) 2 + ( ν ν B m ) 2
I m ao = ( | E | 2 u m dxdy ) 2 | E | 4 dxdy. | u m | 2 dxdy
V L = V L 0 (1+ K L σ)
K L = 1 2( λ+2μ )( 3λ+2μ ) ( λ+μ μ ( 4λ+10μ )+λ )
λ=ρ[ ( V L 0 ) 2 2 ( V T 0 ) 2 ]
μ=ρ ( V T 0 ) 2
R= σ(r)| r=0 σ(r)| r=0 160g

Metrics