Abstract

The proposed patterned polarizer rather than the conventional ±λ/4 polarizer can further reduce the crosstalk through its corresponding glass for stereoscopic LCDs and can be fabricated by using the same patterned alignment technique. The patterned polarizer comprises a linear polarizer, a patterned retarder and a biaxial film. The maximum crosstalk ratio of the optimal design is reduced from 0.1 (for the conventional circular polarizer using ±λ/4 retarder and positive C film) to 0.016 (for the proposed structure) at ±60° viewing cone for the light obliquely passing through both the glasses and the LCD at the same angle. As to the light normally passing through both the LCD and glasses, the maximum crosstalk ratio can be reduced from 0.0167 to 0.0126 with rotated glasses.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Tsai, K. C. Huang, K. J. Lee, and W. J. Hsueh, “Fabricating microretarders by CO2 laser heating process technology,” Opt. Eng. 40(11), 2577–2581 (2001).
    [CrossRef]
  2. Y. J. Wu, Y. S. Jeng, P. C. Yeh, C. J. Hu, and W. M. Huang, “Stereoscopic 3D Display using Patterned Retarder,” SID Int. Symp. Digest Tech. Papers 39(1), 260–263 (2008).
  3. J. Harrold, A. Jacobs, G. Woodgate, and D. Ezra, “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update,” Sharp Tech. J. 74, 24–30 (1999).
  4. C. T. Lee, C. H. Tsai, and H. Y. Lin, “The Improvement of In-cell Microretarder for Stereoscopic LCD Fabrication,” SID Int. Symp. Digest Tech. Papers 39(1), 448–451 (2008).
  5. J. H. Oh, W. H. Park, B. S. Oh, D. H. Kang, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, K. H. Lee, and K. H. Park, “Stereoscopic TFT-LCD with Wire Grid Polarizer and Retarder,” SID Int. Symp. Digest Tech. Papers 39(1), 444–447 (2008).
  6. C. T. Lee, C. H. Tsai, W. C. Liu, and H. Y. Lin, “Fabrication of In-cell Microretarder & In-cell Polarizer for Stereoscopic LCD by Solution Process,” Proc. Int. Display Manufacturing Conference, pp. 2–16 (2009).
  7. C. T. Lee, H. Y. Lin, and C. H. Tsai, “Designs of broadband and wide-view patterned polarizers for stereoscopic 3D displays,” Opt. Express 18(26), 27079–27094 (2010).
    [CrossRef] [PubMed]
  8. Y. Yoshihara, H. Ujike, and T. Tanabe, “3D Crosstalk of Stereoscopic (3D) Display using Patterned Retarder and Corresponding Glasses,” Proc. Int. Display Workshops, 3Dp-5 (2008).
  9. E. J. Acosta, E. J. Beynon, A. M. S. Jacobs, M. G. Robinson, K. A. Saynor, M. D. Tillin, M. J. Towler, and H. G. Walton, “Broadband optical retardation device,” US Patent 6735017 (2004)
  10. H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K. Shin, and I. J. Chung, “A Novel Polarizer Glasses-type 3D Displays with a Patterned Retarder,” SID Int. Symp. Digest Tech. Papers 41(1), 1–4 (2010).
  11. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Designs of wide-view and broadband circular polarizers,” Opt. Express 13(20), 8318–8331 (2005).
    [CrossRef] [PubMed]
  12. T. Ishinabe, T. Miyashita, and T. Uchida, “Wide-viewing-angle polarizer with a large wavelength range,” Jpn. J. Appl. Phys. 41(Part 1, No. 7A), 4553–4558 (2002).
    [CrossRef]
  13. Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13(26), 10777–10783 (2005).
    [CrossRef] [PubMed]
  14. Y. C. Yang and D. K. Yang, “Analytic expressions of optical retardation of biaxial compensation films for liquid crystal displays,” J. Opt. A, Pure Appl. Opt. 11(10), 105502 (2009).
    [CrossRef]
  15. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  16. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

2010

2009

Y. C. Yang and D. K. Yang, “Analytic expressions of optical retardation of biaxial compensation films for liquid crystal displays,” J. Opt. A, Pure Appl. Opt. 11(10), 105502 (2009).
[CrossRef]

2005

2002

T. Ishinabe, T. Miyashita, and T. Uchida, “Wide-viewing-angle polarizer with a large wavelength range,” Jpn. J. Appl. Phys. 41(Part 1, No. 7A), 4553–4558 (2002).
[CrossRef]

2001

C. H. Tsai, K. C. Huang, K. J. Lee, and W. J. Hsueh, “Fabricating microretarders by CO2 laser heating process technology,” Opt. Eng. 40(11), 2577–2581 (2001).
[CrossRef]

1999

J. Harrold, A. Jacobs, G. Woodgate, and D. Ezra, “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update,” Sharp Tech. J. 74, 24–30 (1999).

Ezra, D.

J. Harrold, A. Jacobs, G. Woodgate, and D. Ezra, “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update,” Sharp Tech. J. 74, 24–30 (1999).

Harrold, J.

J. Harrold, A. Jacobs, G. Woodgate, and D. Ezra, “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update,” Sharp Tech. J. 74, 24–30 (1999).

Hong, Q.

Hsueh, W. J.

C. H. Tsai, K. C. Huang, K. J. Lee, and W. J. Hsueh, “Fabricating microretarders by CO2 laser heating process technology,” Opt. Eng. 40(11), 2577–2581 (2001).
[CrossRef]

Huang, K. C.

C. H. Tsai, K. C. Huang, K. J. Lee, and W. J. Hsueh, “Fabricating microretarders by CO2 laser heating process technology,” Opt. Eng. 40(11), 2577–2581 (2001).
[CrossRef]

Ishinabe, T.

T. Ishinabe, T. Miyashita, and T. Uchida, “Wide-viewing-angle polarizer with a large wavelength range,” Jpn. J. Appl. Phys. 41(Part 1, No. 7A), 4553–4558 (2002).
[CrossRef]

Jacobs, A.

J. Harrold, A. Jacobs, G. Woodgate, and D. Ezra, “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update,” Sharp Tech. J. 74, 24–30 (1999).

Lee, C. T.

Lee, K. J.

C. H. Tsai, K. C. Huang, K. J. Lee, and W. J. Hsueh, “Fabricating microretarders by CO2 laser heating process technology,” Opt. Eng. 40(11), 2577–2581 (2001).
[CrossRef]

Lin, H. Y.

Lu, R.

Miyashita, T.

T. Ishinabe, T. Miyashita, and T. Uchida, “Wide-viewing-angle polarizer with a large wavelength range,” Jpn. J. Appl. Phys. 41(Part 1, No. 7A), 4553–4558 (2002).
[CrossRef]

Tsai, C. H.

C. T. Lee, H. Y. Lin, and C. H. Tsai, “Designs of broadband and wide-view patterned polarizers for stereoscopic 3D displays,” Opt. Express 18(26), 27079–27094 (2010).
[CrossRef] [PubMed]

C. H. Tsai, K. C. Huang, K. J. Lee, and W. J. Hsueh, “Fabricating microretarders by CO2 laser heating process technology,” Opt. Eng. 40(11), 2577–2581 (2001).
[CrossRef]

Uchida, T.

T. Ishinabe, T. Miyashita, and T. Uchida, “Wide-viewing-angle polarizer with a large wavelength range,” Jpn. J. Appl. Phys. 41(Part 1, No. 7A), 4553–4558 (2002).
[CrossRef]

Woodgate, G.

J. Harrold, A. Jacobs, G. Woodgate, and D. Ezra, “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update,” Sharp Tech. J. 74, 24–30 (1999).

Wu, S. T.

Wu, T. X.

Yang, D. K.

Y. C. Yang and D. K. Yang, “Analytic expressions of optical retardation of biaxial compensation films for liquid crystal displays,” J. Opt. A, Pure Appl. Opt. 11(10), 105502 (2009).
[CrossRef]

Yang, Y. C.

Y. C. Yang and D. K. Yang, “Analytic expressions of optical retardation of biaxial compensation films for liquid crystal displays,” J. Opt. A, Pure Appl. Opt. 11(10), 105502 (2009).
[CrossRef]

Zhu, X.

J. Opt. A, Pure Appl. Opt.

Y. C. Yang and D. K. Yang, “Analytic expressions of optical retardation of biaxial compensation films for liquid crystal displays,” J. Opt. A, Pure Appl. Opt. 11(10), 105502 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

T. Ishinabe, T. Miyashita, and T. Uchida, “Wide-viewing-angle polarizer with a large wavelength range,” Jpn. J. Appl. Phys. 41(Part 1, No. 7A), 4553–4558 (2002).
[CrossRef]

Opt. Eng.

C. H. Tsai, K. C. Huang, K. J. Lee, and W. J. Hsueh, “Fabricating microretarders by CO2 laser heating process technology,” Opt. Eng. 40(11), 2577–2581 (2001).
[CrossRef]

Opt. Express

Sharp Tech. J.

J. Harrold, A. Jacobs, G. Woodgate, and D. Ezra, “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update,” Sharp Tech. J. 74, 24–30 (1999).

Other

C. T. Lee, C. H. Tsai, and H. Y. Lin, “The Improvement of In-cell Microretarder for Stereoscopic LCD Fabrication,” SID Int. Symp. Digest Tech. Papers 39(1), 448–451 (2008).

J. H. Oh, W. H. Park, B. S. Oh, D. H. Kang, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, K. H. Lee, and K. H. Park, “Stereoscopic TFT-LCD with Wire Grid Polarizer and Retarder,” SID Int. Symp. Digest Tech. Papers 39(1), 444–447 (2008).

C. T. Lee, C. H. Tsai, W. C. Liu, and H. Y. Lin, “Fabrication of In-cell Microretarder & In-cell Polarizer for Stereoscopic LCD by Solution Process,” Proc. Int. Display Manufacturing Conference, pp. 2–16 (2009).

Y. Yoshihara, H. Ujike, and T. Tanabe, “3D Crosstalk of Stereoscopic (3D) Display using Patterned Retarder and Corresponding Glasses,” Proc. Int. Display Workshops, 3Dp-5 (2008).

E. J. Acosta, E. J. Beynon, A. M. S. Jacobs, M. G. Robinson, K. A. Saynor, M. D. Tillin, M. J. Towler, and H. G. Walton, “Broadband optical retardation device,” US Patent 6735017 (2004)

H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K. Shin, and I. J. Chung, “A Novel Polarizer Glasses-type 3D Displays with a Patterned Retarder,” SID Int. Symp. Digest Tech. Papers 41(1), 1–4 (2010).

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

Y. J. Wu, Y. S. Jeng, P. C. Yeh, C. J. Hu, and W. M. Huang, “Stereoscopic 3D Display using Patterned Retarder,” SID Int. Symp. Digest Tech. Papers 39(1), 260–263 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Two simulation models for oblique incidence. (a) Light obliquely passes through the patterned polarizer on LCD (θ1≠ 0°), but normally passes through the glasses (θ2 = 0°). (b) Light obliquely passes through both the patterned polarizer on LCD and glasses (θ2 = θ1≠ 0°).

Fig. 2
Fig. 2

Configuration of wide-view patterned polarizer for stereoscopic displays with corresponding polarizers on glasses.

Fig. 3
Fig. 3

(a) Simulated loci of Stokes parameters at normal incidence for the light emerged from the right-eye polarizer on LCD in Fig. 2. (b) S3 of different wavelengths at θ = 60° with varied azimuthal angles.

Fig. 4
Fig. 4

Simulated iso-crosstalk ratio contour of left-eye crosstalk by conventional circular polarizer consisting of an in-cell QWP and a positive C plate. (a) Oblique case A and (b) Oblique case B.

Fig. 5
Fig. 5

Simulated iso-crosstalk ratio contour of left-eye crosstalk by proposed circular polarizer consisting of an in-cell WP and a biaxial plate. (a) Oblique case A and (b) Oblique case B.

Fig. 6
Fig. 6

(a) Configuration of rotated glasses with varied angle of φ, where φ = 0° is defined as the most suitable posture for viewers and has no crosstalk. Light normally passes through the patterned polarizer on LCD and the glasses (θ1 = θ2 = 0°). (b) Comparison of crosstalk ratio v.s. angle φ between conventional and proposed structure at normal incidence.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Crosstalk Ratio = Luminance of Unwanted Image Luminance of Correct Image .
M WP (Γ,Φ)=( 1 0 0 0 0 cos 2 2Φ+ sin 2 2ΦcosΓ sin2Φcos2Φ(1cosΓ) sin2ΦsinΓ 0 sin2Φcos2Φ sin 2 2Φ cos2ΦsinΓ 0 sin2ΦsinΓ cos2ΦsinΓ cosΓ ).
2Φ=arctan( Δ n || [sin2(ψ ψ m )]cos θ 0 (1/2)Δ n || [cos2(ψ ψ m )](1+ cos 2 θ 0 )+Δ n sin 2 θ 0 ),
n ξ n η =| Δ n || sin2(ψ ψ m )cos θ 0 sin2Φ |,
Γ= 2π λ ( n ξ n η )d cos θ 0 ,
COST=max{ S3|( θ 1 =0°~60° , ψ=0°~360° ) },
COST=max{ Crosstalk Ratio|( θ 1 =0°~30°, ψ=0°~360° θ 2 =0° & θ 1 ) },

Metrics