Abstract

We propose and demonstrate a novel scheme for obtaining quasi-uniform rate polarization scrambling at up to 752 krad/s in fiber optic systems by using cascaded multiple fiber squeezers with each one placed in a certain orientation. Additionally, this polarization scrambler is compatible with both single-polarization and polarization-multiplexing systems. We also show that scrambled SOP with this scheme uniformly covers the whole Poincare Sphere and that the scrambling rates are mostly concentrated towards the high end of the rate distribution histogram. Such a scrambling scheme is advantageous for the deterministic characterization of performances for modern fiber optic transceivers, especially those deploying coherent detection techniques, against rapid polarization variations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
    [CrossRef]
  2. F. Derr, “Coherent optical QPSK intradyne system: concept and digital receiver realization,” J. Lightwave Technol. 10(9), 1290–1296 (1992).
    [CrossRef]
  3. E. Ip, A. P. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  4. J. Zyskind, R. Barry, G. Pendock, M. Cahill, and J. Ranka, “High-capacity, ultra-long haul networks,” Ch. 5, in Optical Fiber Telecommunication IVB, Systems and Impairments, eds. I. Kaminow and T. Li (Academic Press, San Diego, 2002).
  5. H. Kogelnik, R. Jopson, and L. Nelson, “Polarization mode-dispersion,” in Optical Fiber Telecommunication IVB, Systems and Impairments, eds. I. Kaminow and T. Li, (Academic Press, San Diego, 2002) chap. 15.
  6. P. M. Krummrich and K. Kotten, “Extremely fast (microsecond scale) polarization changes in high speed long hail WDM transmission systems,” in Proc. OFC 2004, paper FI3.
  7. D. L. Peterson, P. J. Leo, and K. B. Rochford, “Field measurements of state of polarization and PMD from a tier-1 carrier,” Proc. OFC 2004, paper FI1.
  8. M. Boroditsky, M. Brodsky, N. J. Frigo, P. Magill, and H. Rosenfeldt, “Polarization dynamics in installed fiber optic systems,” Proc. LEOS 2005, paper TuCC1.
  9. P. J. Leo, G. R. Gray, G. J. Simer, and K. B. Rochford, “State of polarization changes: classification and measurement,” J. Lightwave Technol. 21(10), 2189–2193 (2003).
    [CrossRef]
  10. P. M. Krummrich, E.-D. Schmidt, W. Weiershausen, and A. Mattheus, “Field trial on statistics of fast polarization changes in long haul WDM transmission systems,” in Proc. OFC 2005, paper OThT6.
  11. L. Yan, Q. Yu, and A. E. Willner, “Uniformly distributed states of polarization on the Poincare Sphere using an improved polarization scrambling scheme,” Opt. Commun. 249(1-3), 43–50 (2005).
    [CrossRef]
  12. Y. K. Lize, R. Gomma, R. Kashyap, L. Palmer, and A. E. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279(1), 50–52 (2007).
    [CrossRef]
  13. B. Koch, R. Noé, V. Mirvoda, and D. Sandel, “100-krad/s endless polarisation tracking with miniaturised module card,” Electron. Lett. 47(14), 813–814 (2011).
    [CrossRef]
  14. http://www.novoptel.de/Scrambling/EPS1000_flyer.pdf
  15. A. Hidayat, B. Koch, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noé, “High-speed endless optical polarization stabilization using calibrated waveplates and field-programmable gate array-based digital controller,” Opt. Express 16(23), 18984–18991 (2008).
    [CrossRef] [PubMed]
  16. S. Yao, “Polarization in fiber systems: squeezing out more bandwidth,” in The Photonics Handbook (Laurin Publishing, Pittsfield, MA 2004).
  17. R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6(7), 1199–1208 (1988).
    [CrossRef]
  18. W. H. J. Aarts and G. Khoe, “New endless polarization control method using three fiber squeezers,” J. Lightwave Technol. 7(7), 1033–1043 (1989).
    [CrossRef]
  19. E. Collett, Polarized Light in Fiber Optics (PolaWave Group, Lincroft, New Jersey, 2003).
  20. A. M. Smith, “Single-mode fibre pressure sensitivity,” Electron. Lett. 16(20), 773–774 (1980).
    [CrossRef]
  21. M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications Systems,” J. Lightwave Technol. 24(11), 4172–4183 (2006).
    [CrossRef]
  22. http://www.generalphotonics.com/pdf/FAQPolariteII.pdf

2011 (1)

B. Koch, R. Noé, V. Mirvoda, and D. Sandel, “100-krad/s endless polarisation tracking with miniaturised module card,” Electron. Lett. 47(14), 813–814 (2011).
[CrossRef]

2008 (2)

2007 (1)

Y. K. Lize, R. Gomma, R. Kashyap, L. Palmer, and A. E. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279(1), 50–52 (2007).
[CrossRef]

2006 (1)

2005 (1)

L. Yan, Q. Yu, and A. E. Willner, “Uniformly distributed states of polarization on the Poincare Sphere using an improved polarization scrambling scheme,” Opt. Commun. 249(1-3), 43–50 (2005).
[CrossRef]

2004 (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

2003 (1)

1992 (1)

F. Derr, “Coherent optical QPSK intradyne system: concept and digital receiver realization,” J. Lightwave Technol. 10(9), 1290–1296 (1992).
[CrossRef]

1989 (1)

W. H. J. Aarts and G. Khoe, “New endless polarization control method using three fiber squeezers,” J. Lightwave Technol. 7(7), 1033–1043 (1989).
[CrossRef]

1988 (1)

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6(7), 1199–1208 (1988).
[CrossRef]

1980 (1)

A. M. Smith, “Single-mode fibre pressure sensitivity,” Electron. Lett. 16(20), 773–774 (1980).
[CrossRef]

Aarts, W. H. J.

W. H. J. Aarts and G. Khoe, “New endless polarization control method using three fiber squeezers,” J. Lightwave Technol. 7(7), 1033–1043 (1989).
[CrossRef]

Barros, D. J.

Derr, F.

F. Derr, “Coherent optical QPSK intradyne system: concept and digital receiver realization,” J. Lightwave Technol. 10(9), 1290–1296 (1992).
[CrossRef]

Gomma, R.

Y. K. Lize, R. Gomma, R. Kashyap, L. Palmer, and A. E. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279(1), 50–52 (2007).
[CrossRef]

Gray, G. R.

Heidrich, H.

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6(7), 1199–1208 (1988).
[CrossRef]

Hidayat, A.

Hoffmann, D.

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6(7), 1199–1208 (1988).
[CrossRef]

Ip, E.

Kahn, J. M.

Kashyap, R.

Y. K. Lize, R. Gomma, R. Kashyap, L. Palmer, and A. E. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279(1), 50–52 (2007).
[CrossRef]

Khoe, G.

W. H. J. Aarts and G. Khoe, “New endless polarization control method using three fiber squeezers,” J. Lightwave Technol. 7(7), 1033–1043 (1989).
[CrossRef]

Koch, B.

Lau, A. P.

Leo, P. J.

Lichtinger, M.

Lize, Y. K.

Y. K. Lize, R. Gomma, R. Kashyap, L. Palmer, and A. E. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279(1), 50–52 (2007).
[CrossRef]

Martelli, P.

Martinelli, M.

Mirvoda, V.

Noe, R.

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6(7), 1199–1208 (1988).
[CrossRef]

Noé, R.

Palmer, L.

Y. K. Lize, R. Gomma, R. Kashyap, L. Palmer, and A. E. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279(1), 50–52 (2007).
[CrossRef]

Pietralunga, S. M.

Rochford, K. B.

Sandel, D.

Simer, G. J.

Smith, A. M.

A. M. Smith, “Single-mode fibre pressure sensitivity,” Electron. Lett. 16(20), 773–774 (1980).
[CrossRef]

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

Willner, A. E.

Y. K. Lize, R. Gomma, R. Kashyap, L. Palmer, and A. E. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279(1), 50–52 (2007).
[CrossRef]

L. Yan, Q. Yu, and A. E. Willner, “Uniformly distributed states of polarization on the Poincare Sphere using an improved polarization scrambling scheme,” Opt. Commun. 249(1-3), 43–50 (2005).
[CrossRef]

Yan, L.

L. Yan, Q. Yu, and A. E. Willner, “Uniformly distributed states of polarization on the Poincare Sphere using an improved polarization scrambling scheme,” Opt. Commun. 249(1-3), 43–50 (2005).
[CrossRef]

Yu, Q.

L. Yan, Q. Yu, and A. E. Willner, “Uniformly distributed states of polarization on the Poincare Sphere using an improved polarization scrambling scheme,” Opt. Commun. 249(1-3), 43–50 (2005).
[CrossRef]

Zhang, H.

Electron. Lett. (2)

B. Koch, R. Noé, V. Mirvoda, and D. Sandel, “100-krad/s endless polarisation tracking with miniaturised module card,” Electron. Lett. 47(14), 813–814 (2011).
[CrossRef]

A. M. Smith, “Single-mode fibre pressure sensitivity,” Electron. Lett. 16(20), 773–774 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

J. Lightwave Technol. (5)

F. Derr, “Coherent optical QPSK intradyne system: concept and digital receiver realization,” J. Lightwave Technol. 10(9), 1290–1296 (1992).
[CrossRef]

P. J. Leo, G. R. Gray, G. J. Simer, and K. B. Rochford, “State of polarization changes: classification and measurement,” J. Lightwave Technol. 21(10), 2189–2193 (2003).
[CrossRef]

M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications Systems,” J. Lightwave Technol. 24(11), 4172–4183 (2006).
[CrossRef]

R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6(7), 1199–1208 (1988).
[CrossRef]

W. H. J. Aarts and G. Khoe, “New endless polarization control method using three fiber squeezers,” J. Lightwave Technol. 7(7), 1033–1043 (1989).
[CrossRef]

Opt. Commun. (2)

L. Yan, Q. Yu, and A. E. Willner, “Uniformly distributed states of polarization on the Poincare Sphere using an improved polarization scrambling scheme,” Opt. Commun. 249(1-3), 43–50 (2005).
[CrossRef]

Y. K. Lize, R. Gomma, R. Kashyap, L. Palmer, and A. E. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279(1), 50–52 (2007).
[CrossRef]

Opt. Express (2)

Other (10)

J. Zyskind, R. Barry, G. Pendock, M. Cahill, and J. Ranka, “High-capacity, ultra-long haul networks,” Ch. 5, in Optical Fiber Telecommunication IVB, Systems and Impairments, eds. I. Kaminow and T. Li (Academic Press, San Diego, 2002).

H. Kogelnik, R. Jopson, and L. Nelson, “Polarization mode-dispersion,” in Optical Fiber Telecommunication IVB, Systems and Impairments, eds. I. Kaminow and T. Li, (Academic Press, San Diego, 2002) chap. 15.

P. M. Krummrich and K. Kotten, “Extremely fast (microsecond scale) polarization changes in high speed long hail WDM transmission systems,” in Proc. OFC 2004, paper FI3.

D. L. Peterson, P. J. Leo, and K. B. Rochford, “Field measurements of state of polarization and PMD from a tier-1 carrier,” Proc. OFC 2004, paper FI1.

M. Boroditsky, M. Brodsky, N. J. Frigo, P. Magill, and H. Rosenfeldt, “Polarization dynamics in installed fiber optic systems,” Proc. LEOS 2005, paper TuCC1.

S. Yao, “Polarization in fiber systems: squeezing out more bandwidth,” in The Photonics Handbook (Laurin Publishing, Pittsfield, MA 2004).

http://www.novoptel.de/Scrambling/EPS1000_flyer.pdf

P. M. Krummrich, E.-D. Schmidt, W. Weiershausen, and A. Mattheus, “Field trial on statistics of fast polarization changes in long haul WDM transmission systems,” in Proc. OFC 2005, paper OThT6.

E. Collett, Polarized Light in Fiber Optics (PolaWave Group, Lincroft, New Jersey, 2003).

http://www.generalphotonics.com/pdf/FAQPolariteII.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fiber squeezer arrangement and experiment setup for demonstrating different scrambling approaches. The first three fiber squeezers are oriented 45 degrees from one another and the last three are oriented the same as the third squeezer. The polarization controller in front of the fiber squeezers is for adjusting the input SOP into the fiber squeezers, and the polarimeter is for observing SOP changes on a Poincare Sphere.

Fig. 2
Fig. 2

(a) When SOP traces out a small circle on Poincare Sphere, the SOP variation angle α is small (a small fraction of 2π) and so is the SOP changing rate; (b) when SOP trace out a great circle on Poincare Sphere, corresponding to the case that input SOP to the wave plate is 45 degree from its birefringence axis, the angular change per circle reaches its largest value of 2π. The corresponding SOP changing rate is also maximized. In general, for a given retardation variation, the smaller the radius of curvature of the SOP trace, the smaller the rate of SOP variation.

Fig. 3
Fig. 3

(a) Illustration of random SOP variation of a conventional scrambling scheme; (b) The corresponding SOP variation rate histogram following Rayleigh distribution; (c) Measured SOP trace of the uniform rate scrambling approach, where the trace evolves like a circle spinning around a diametric axis; (d) Polarization scrambling rate histogram showing a single scrambling rate; (e) Measured SOP trace of the quasi-uniform rate scrambling approach. SOP rotates around Poincare Sphere at a high speed to form a circle, which moves back and forth along the rotation axis of the circles to cover the whole sphere. (f) Polarization scrambling rate histogram showing a quasi-uniform scrambling rate.

Fig. 4
Fig. 4

Experimental results showing that SOP variation rate adds up with multiple fiber squeezers oriented in the same directions. In the experiment, the triangle wave with a frequency of 101.9 Hz and an amplitude of 60 volts drives the SOP to rotate a full circle on Poincare Sphere (phase retardation of 2π). (a) Driving signal with a triangle waveform. (b), (c), (d) and (e) correspond to the SOP variation as a function of time for simultaneously using 1, 2, 3, and 4 fiber squeezers respectively.

Fig. 5
Fig. 5

Experiment data (a) for demonstrating quasi-uniform rate scrambling at 120π krad/s (376 krad/s). With an SOP angle change of 2π in 16.64 us, corresponding to a SOP variation rate of 120π krads/s (2π/16.64 us). (b) Experimental data demonstrating scrambling rate at 240π krad/s (752 krad/s).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M ˜ i =( 1 0 0 0 0 cos4 θ i sin 2 ϕ i /2+ cos 2 ϕ i /2 sin4 θ i sin 2 ϕ i /2 0 0 sin4 θ i sin 2 ϕ i /2 cos4 θ i sin 2 ϕ i /2+ cos 2 ϕ i /2 cos2 θ i sin ϕ i 0 0 cos2 θ i sin ϕ i cos ϕ i )
S i = M ˜ i S i-1
cos θ mn = S m S n / | S m || S n | ,
<DOP>= < S 1 > 2 +< S 2 > 2 +< S 3 > 2 / S o

Metrics