Abstract

Evaporation kinetics of fused silica were measured up to ≈3000K using CO2 laser heating, while solid-gas phase chemistry of silica was assessed with hydrogen, air, and nitrogen. Enhanced evaporation in hydrogen was attributed to an additional reduction pathway, while oxidizing conditions pushed the reaction backwards. The observed mass transport limitations supported use of a near-equilibrium analysis for interpreting kinetic data. A semi-empirical model of the evaporation kinetics is derived that accounts for heating, gas chemistry and transport properties. The approach described should have application to materials laser processing, and in applications requiring knowledge of thermal decomposition chemistry under extreme temperatures.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Lee, “Reaction of high-silica optical fibers with hydrofluoric-acid,” J. Am. Ceram. Soc. 67(2), C21–C22 (1984).
    [CrossRef]
  2. G. Montano-Miranda and A. Muscat, “Etching of silicon dioxide with gas phase HF and water: Initiation, bulk etching, and termination,” in Proceedings of Ultra Clean Processing of Semiconductor Surfaces VIII, P. Mertens, M. Meuris, and M. Heyns, eds. (Trans Tech Publications Ltd, Antwerp, Belgium, 2006), pp. 3–6.
  3. J. F. Bacon, A. A. Hasapis, and J. W. Wholley, “Viscosity and density of molten silica and high silica content glasses,” Phys. Chem. Glasses 1(3), 90–98 (1960).
  4. R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5(2), 123–175 (1970).
    [CrossRef]
  5. J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. 2. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972).
    [CrossRef]
  6. R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
    [CrossRef]
  7. S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606–2616 (2010).
    [CrossRef]
  8. H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev. 60(4), 331–362 (1960).
    [CrossRef]
  9. I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
    [CrossRef]
  10. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006).
    [CrossRef] [PubMed]
  11. V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
    [CrossRef]
  12. P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express 18(25), 26068–26076 (2010).
    [CrossRef] [PubMed]
  13. L. Gallais, P. Cormont, and J. L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express 17(26), 23488–23501 (2009).
    [CrossRef] [PubMed]
  14. M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
    [CrossRef]
  15. D. M. Mattox and H. D. Smith, “Hydrogen surface etching of molten silica,” J. Am. Ceram. Soc. 71(8), C392–C394 (1988).
    [CrossRef]
  16. S. T. Tso and J. A. Pask, “Reaction of fused-silica with hydrogen gas,” J. Am. Ceram. Soc. 65(9), 457–460 (1982).
    [CrossRef]
  17. K. Schwerdtfeger, “Rate of silica reduction in reducing gases at 1500 Degrees C,” Trans. Metall. Soc. AIME 236(8), 1152–1156 (1966).
  18. R. A. Gardner, “Kinetics of silica reduction in hydrogen,” J. Solid State Chem. 9(4), 336–344 (1974).
    [CrossRef]
  19. J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers - a review,” J. Lightwave Technol. 5(5), 712–733 (1987).
    [CrossRef]
  20. T. Addona and R. J. Munz, “Silica decomposition using a transferred arc process,” Ind. Eng. Chem. Res. 38(6), 2299–2309 (1999).
    [CrossRef]
  21. J. F. Shackelford and J. S. Masaryk, “Thermodynamics of water and hydrogen solubility in fused silica,” J. Non-Cryst. Solids 21(1), 55–64 (1976).
    [CrossRef]
  22. A. de Rudnay, “Evaporation of silica,” Vacuum 1(3), 204–205 (1951).
    [CrossRef]
  23. L. Pekker, N. Gimelshein, and S. Gimelshein, “Analytical and kinetic modeling of ablation process,” J. Thermophys. Heat Transfer 23(3), 473–478 (2009).
  24. G. Han and H. Y. Sohn, “Kinetics of the hydrogen reduction of silica incorporating the effect of gas-volume change upon reaction,” J. Am. Ceram. Soc. 88(4), 882–888 (2005).
    [CrossRef]
  25. H. Y. Sohn, “The influence of chemical equilibrium on fluid-solid reaction rates and the falsification of activation energy,” Metall. Mater. Trans. B 35(1), 121–131 (2004).
    [CrossRef]
  26. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
    [CrossRef]
  27. S. Elhadj, S. T. Yang, M. J. Matthews, D. J. Cooke, J. D. Bude, M. Johnson, M. Feit, V. Draggoo, and S. E. Bisson, “High temperature thermographic measurements of laser heated silica,” Proc. SPIE 7504, 750419 (2009).
    [CrossRef]
  28. S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
    [CrossRef]
  29. N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73(2), 199–208 (2001).
  30. T. J. McNeil, R. Cole, and R. S. Subramanian, “Surface-tension-driven flow in a glass melt,” J. Am. Ceram. Soc. 68(5), 254–259 (1985).
    [CrossRef]
  31. A. Kar and J. Mazumder, “2-Dimensional model for material damage due to melting and vaporization during laser irradiation,” J. Appl. Phys. 68(8), 3884–3891 (1990).
    [CrossRef]
  32. W. J. Massman, “A review of the molecular diffusivities of H2O, CO2, CH4, CO, O-3, SO2, NH3, N2O, NO, and NO2 in air, O-2 and N-2 near STP,” Atmos. Environ. 32(6), 1111–1127 (1998).
    [CrossRef]
  33. B. Ozturk and R. J. Fruehan, “The rate of formation of SiO by the reaction of CO or H2 with silica and silicate slags,” Metall. Mater. Trans. B 16(4), 801–806 (1985).
  34. F*A*C*T (Facility for the Analysis of Chemical Thermodynamics) http://www.crct.polymtl.ca/fact/fact.htm .
  35. H. Y. Sohn, “Overall rate analysis of the gaseous reduction of stable oxides incorporating chemical kinetics, mass transfer, and chemical equilibrium,” J. Am. Ceram. Soc. 89(3), 1006–1013 (2006).
    [CrossRef]
  36. S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a vertical plate,” Int. J. Heat Mass Transfer 18(11), 1323–1329 (1975).
    [CrossRef]
  37. S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer 18(9), 1049–1053 (1975).
    [CrossRef]
  38. CRC Handbook of Chemistry and Physics, 65th ed. (CRC Press, Boca Raton, FL, USA, 1984).

2010 (4)

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606–2616 (2010).
[CrossRef]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express 18(25), 26068–26076 (2010).
[CrossRef] [PubMed]

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

2009 (4)

L. Pekker, N. Gimelshein, and S. Gimelshein, “Analytical and kinetic modeling of ablation process,” J. Thermophys. Heat Transfer 23(3), 473–478 (2009).

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

S. Elhadj, S. T. Yang, M. J. Matthews, D. J. Cooke, J. D. Bude, M. Johnson, M. Feit, V. Draggoo, and S. E. Bisson, “High temperature thermographic measurements of laser heated silica,” Proc. SPIE 7504, 750419 (2009).
[CrossRef]

L. Gallais, P. Cormont, and J. L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express 17(26), 23488–23501 (2009).
[CrossRef] [PubMed]

2007 (1)

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

2006 (2)

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006).
[CrossRef] [PubMed]

H. Y. Sohn, “Overall rate analysis of the gaseous reduction of stable oxides incorporating chemical kinetics, mass transfer, and chemical equilibrium,” J. Am. Ceram. Soc. 89(3), 1006–1013 (2006).
[CrossRef]

2005 (1)

G. Han and H. Y. Sohn, “Kinetics of the hydrogen reduction of silica incorporating the effect of gas-volume change upon reaction,” J. Am. Ceram. Soc. 88(4), 882–888 (2005).
[CrossRef]

2004 (1)

H. Y. Sohn, “The influence of chemical equilibrium on fluid-solid reaction rates and the falsification of activation energy,” Metall. Mater. Trans. B 35(1), 121–131 (2004).
[CrossRef]

2003 (1)

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[CrossRef]

2002 (1)

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
[CrossRef]

2001 (1)

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73(2), 199–208 (2001).

1999 (1)

T. Addona and R. J. Munz, “Silica decomposition using a transferred arc process,” Ind. Eng. Chem. Res. 38(6), 2299–2309 (1999).
[CrossRef]

1998 (1)

W. J. Massman, “A review of the molecular diffusivities of H2O, CO2, CH4, CO, O-3, SO2, NH3, N2O, NO, and NO2 in air, O-2 and N-2 near STP,” Atmos. Environ. 32(6), 1111–1127 (1998).
[CrossRef]

1990 (1)

A. Kar and J. Mazumder, “2-Dimensional model for material damage due to melting and vaporization during laser irradiation,” J. Appl. Phys. 68(8), 3884–3891 (1990).
[CrossRef]

1988 (1)

D. M. Mattox and H. D. Smith, “Hydrogen surface etching of molten silica,” J. Am. Ceram. Soc. 71(8), C392–C394 (1988).
[CrossRef]

1987 (1)

J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers - a review,” J. Lightwave Technol. 5(5), 712–733 (1987).
[CrossRef]

1985 (2)

T. J. McNeil, R. Cole, and R. S. Subramanian, “Surface-tension-driven flow in a glass melt,” J. Am. Ceram. Soc. 68(5), 254–259 (1985).
[CrossRef]

B. Ozturk and R. J. Fruehan, “The rate of formation of SiO by the reaction of CO or H2 with silica and silicate slags,” Metall. Mater. Trans. B 16(4), 801–806 (1985).

1984 (1)

M. T. Lee, “Reaction of high-silica optical fibers with hydrofluoric-acid,” J. Am. Ceram. Soc. 67(2), C21–C22 (1984).
[CrossRef]

1982 (1)

S. T. Tso and J. A. Pask, “Reaction of fused-silica with hydrogen gas,” J. Am. Ceram. Soc. 65(9), 457–460 (1982).
[CrossRef]

1976 (1)

J. F. Shackelford and J. S. Masaryk, “Thermodynamics of water and hydrogen solubility in fused silica,” J. Non-Cryst. Solids 21(1), 55–64 (1976).
[CrossRef]

1975 (2)

S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a vertical plate,” Int. J. Heat Mass Transfer 18(11), 1323–1329 (1975).
[CrossRef]

S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer 18(9), 1049–1053 (1975).
[CrossRef]

1974 (1)

R. A. Gardner, “Kinetics of silica reduction in hydrogen,” J. Solid State Chem. 9(4), 336–344 (1974).
[CrossRef]

1972 (1)

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. 2. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972).
[CrossRef]

1970 (1)

R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5(2), 123–175 (1970).
[CrossRef]

1966 (1)

K. Schwerdtfeger, “Rate of silica reduction in reducing gases at 1500 Degrees C,” Trans. Metall. Soc. AIME 236(8), 1152–1156 (1966).

1960 (2)

J. F. Bacon, A. A. Hasapis, and J. W. Wholley, “Viscosity and density of molten silica and high silica content glasses,” Phys. Chem. Glasses 1(3), 90–98 (1960).

H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev. 60(4), 331–362 (1960).
[CrossRef]

1951 (1)

A. de Rudnay, “Evaporation of silica,” Vacuum 1(3), 204–205 (1951).
[CrossRef]

Addona, T.

T. Addona and R. J. Munz, “Silica decomposition using a transferred arc process,” Ind. Eng. Chem. Res. 38(6), 2299–2309 (1999).
[CrossRef]

Bacon, J. F.

J. F. Bacon, A. A. Hasapis, and J. W. Wholley, “Viscosity and density of molten silica and high silica content glasses,” Phys. Chem. Glasses 1(3), 90–98 (1960).

Baker, H. J.

Bass, I. L.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

Bisson, S. E.

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

S. Elhadj, S. T. Yang, M. J. Matthews, D. J. Cooke, J. D. Bude, M. Johnson, M. Feit, V. Draggoo, and S. E. Bisson, “High temperature thermographic measurements of laser heated silica,” Proc. SPIE 7504, 750419 (2009).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Brückner, R.

R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5(2), 123–175 (1970).
[CrossRef]

Bude, J. D.

S. Elhadj, S. T. Yang, M. J. Matthews, D. J. Cooke, J. D. Bude, M. Johnson, M. Feit, V. Draggoo, and S. E. Bisson, “High temperature thermographic measurements of laser heated silica,” Proc. SPIE 7504, 750419 (2009).
[CrossRef]

Bulgakov, A. V.

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73(2), 199–208 (2001).

Bulgakova, N. M.

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73(2), 199–208 (2001).

Chu, H. H. S.

S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a vertical plate,” Int. J. Heat Mass Transfer 18(11), 1323–1329 (1975).
[CrossRef]

S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer 18(9), 1049–1053 (1975).
[CrossRef]

Churchill, S. W.

S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a vertical plate,” Int. J. Heat Mass Transfer 18(11), 1323–1329 (1975).
[CrossRef]

S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer 18(9), 1049–1053 (1975).
[CrossRef]

Cole, R.

T. J. McNeil, R. Cole, and R. S. Subramanian, “Surface-tension-driven flow in a glass melt,” J. Am. Ceram. Soc. 68(5), 254–259 (1985).
[CrossRef]

Combis, P.

Cooke, D.

Cooke, D. J.

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

S. Elhadj, S. T. Yang, M. J. Matthews, D. J. Cooke, J. D. Bude, M. Johnson, M. Feit, V. Draggoo, and S. E. Bisson, “High temperature thermographic measurements of laser heated silica,” Proc. SPIE 7504, 750419 (2009).
[CrossRef]

Cormont, P.

de Rudnay, A.

A. de Rudnay, “Evaporation of silica,” Vacuum 1(3), 204–205 (1951).
[CrossRef]

Doremus, R. H.

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
[CrossRef]

Draggoo, V.

S. Elhadj, S. T. Yang, M. J. Matthews, D. J. Cooke, J. D. Bude, M. Johnson, M. Feit, V. Draggoo, and S. E. Bisson, “High temperature thermographic measurements of laser heated silica,” Proc. SPIE 7504, 750419 (2009).
[CrossRef]

Draggoo, V. G.

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606–2616 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Elhadj, S.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606–2616 (2010).
[CrossRef]

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

S. Elhadj, S. T. Yang, M. J. Matthews, D. J. Cooke, J. D. Bude, M. Johnson, M. Feit, V. Draggoo, and S. E. Bisson, “High temperature thermographic measurements of laser heated silica,” Proc. SPIE 7504, 750419 (2009).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Feit, M.

S. Elhadj, S. T. Yang, M. J. Matthews, D. J. Cooke, J. D. Bude, M. Johnson, M. Feit, V. Draggoo, and S. E. Bisson, “High temperature thermographic measurements of laser heated silica,” Proc. SPIE 7504, 750419 (2009).
[CrossRef]

Fruehan, R. J.

B. Ozturk and R. J. Fruehan, “The rate of formation of SiO by the reaction of CO or H2 with silica and silicate slags,” Metall. Mater. Trans. B 16(4), 801–806 (1985).

Fulrath, R. M.

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. 2. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972).
[CrossRef]

Gallais, L.

Gardner, R. A.

R. A. Gardner, “Kinetics of silica reduction in hydrogen,” J. Solid State Chem. 9(4), 336–344 (1974).
[CrossRef]

Gimelshein, N.

L. Pekker, N. Gimelshein, and S. Gimelshein, “Analytical and kinetic modeling of ablation process,” J. Thermophys. Heat Transfer 23(3), 473–478 (2009).

Gimelshein, S.

L. Pekker, N. Gimelshein, and S. Gimelshein, “Analytical and kinetic modeling of ablation process,” J. Thermophys. Heat Transfer 23(3), 473–478 (2009).

Glukhoedov, N. P.

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[CrossRef]

Guss, G. M.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606–2616 (2010).
[CrossRef]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

Hall, D. R.

Han, G.

G. Han and H. Y. Sohn, “Kinetics of the hydrogen reduction of silica incorporating the effect of gas-volume change upon reaction,” J. Am. Ceram. Soc. 88(4), 882–888 (2005).
[CrossRef]

Hasapis, A. A.

J. F. Bacon, A. A. Hasapis, and J. W. Wholley, “Viscosity and density of molten silica and high silica content glasses,” Phys. Chem. Glasses 1(3), 90–98 (1960).

Hebert, D.

Johnson, M.

S. Elhadj, S. T. Yang, M. J. Matthews, D. J. Cooke, J. D. Bude, M. Johnson, M. Feit, V. Draggoo, and S. E. Bisson, “High temperature thermographic measurements of laser heated silica,” Proc. SPIE 7504, 750419 (2009).
[CrossRef]

Kar, A.

A. Kar and J. Mazumder, “2-Dimensional model for material damage due to melting and vaporization during laser irradiation,” J. Appl. Phys. 68(8), 3884–3891 (1990).
[CrossRef]

Lamaignère, L.

Lee, M. T.

M. T. Lee, “Reaction of high-silica optical fibers with hydrofluoric-acid,” J. Am. Ceram. Soc. 67(2), C21–C22 (1984).
[CrossRef]

Masaryk, J. S.

J. F. Shackelford and J. S. Masaryk, “Thermodynamics of water and hydrogen solubility in fused silica,” J. Non-Cryst. Solids 21(1), 55–64 (1976).
[CrossRef]

Massman, W. J.

W. J. Massman, “A review of the molecular diffusivities of H2O, CO2, CH4, CO, O-3, SO2, NH3, N2O, NO, and NO2 in air, O-2 and N-2 near STP,” Atmos. Environ. 32(6), 1111–1127 (1998).
[CrossRef]

Masychev, V. I.

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[CrossRef]

Matthews, M. J.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606–2616 (2010).
[CrossRef]

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

S. Elhadj, S. T. Yang, M. J. Matthews, D. J. Cooke, J. D. Bude, M. Johnson, M. Feit, V. Draggoo, and S. E. Bisson, “High temperature thermographic measurements of laser heated silica,” Proc. SPIE 7504, 750419 (2009).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

Mattox, D. M.

D. M. Mattox and H. D. Smith, “Hydrogen surface etching of molten silica,” J. Am. Ceram. Soc. 71(8), C392–C394 (1988).
[CrossRef]

Mazumder, J.

A. Kar and J. Mazumder, “2-Dimensional model for material damage due to melting and vaporization during laser irradiation,” J. Appl. Phys. 68(8), 3884–3891 (1990).
[CrossRef]

McNeil, T. J.

T. J. McNeil, R. Cole, and R. S. Subramanian, “Surface-tension-driven flow in a glass melt,” J. Am. Ceram. Soc. 68(5), 254–259 (1985).
[CrossRef]

Mendez, E.

Munz, R. J.

T. Addona and R. J. Munz, “Silica decomposition using a transferred arc process,” Ind. Eng. Chem. Res. 38(6), 2299–2309 (1999).
[CrossRef]

Nostrand, M. J.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

Nowak, K. M.

Ozturk, B.

B. Ozturk and R. J. Fruehan, “The rate of formation of SiO by the reaction of CO or H2 with silica and silicate slags,” Metall. Mater. Trans. B 16(4), 801–806 (1985).

Papchenko, B. P.

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[CrossRef]

Pask, J. A.

S. T. Tso and J. A. Pask, “Reaction of fused-silica with hydrogen gas,” J. Am. Ceram. Soc. 65(9), 457–460 (1982).
[CrossRef]

Pekker, L.

L. Pekker, N. Gimelshein, and S. Gimelshein, “Analytical and kinetic modeling of ablation process,” J. Thermophys. Heat Transfer 23(3), 473–478 (2009).

Ravizza, F. L.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

Rullier, J. L.

Rusanov, S. Y.

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[CrossRef]

Schick, H. L.

H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev. 60(4), 331–362 (1960).
[CrossRef]

Schwerdtfeger, K.

K. Schwerdtfeger, “Rate of silica reduction in reducing gases at 1500 Degrees C,” Trans. Metall. Soc. AIME 236(8), 1152–1156 (1966).

Shackelford, J. F.

J. F. Shackelford and J. S. Masaryk, “Thermodynamics of water and hydrogen solubility in fused silica,” J. Non-Cryst. Solids 21(1), 55–64 (1976).
[CrossRef]

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. 2. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972).
[CrossRef]

Smith, H. D.

D. M. Mattox and H. D. Smith, “Hydrogen surface etching of molten silica,” J. Am. Ceram. Soc. 71(8), C392–C394 (1988).
[CrossRef]

Sohn, H. Y.

H. Y. Sohn, “Overall rate analysis of the gaseous reduction of stable oxides incorporating chemical kinetics, mass transfer, and chemical equilibrium,” J. Am. Ceram. Soc. 89(3), 1006–1013 (2006).
[CrossRef]

G. Han and H. Y. Sohn, “Kinetics of the hydrogen reduction of silica incorporating the effect of gas-volume change upon reaction,” J. Am. Ceram. Soc. 88(4), 882–888 (2005).
[CrossRef]

H. Y. Sohn, “The influence of chemical equilibrium on fluid-solid reaction rates and the falsification of activation energy,” Metall. Mater. Trans. B 35(1), 121–131 (2004).
[CrossRef]

Stolken, J. S.

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

Stone, J.

J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers - a review,” J. Lightwave Technol. 5(5), 712–733 (1987).
[CrossRef]

Studt, P. L.

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. 2. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972).
[CrossRef]

Subramanian, R. S.

T. J. McNeil, R. Cole, and R. S. Subramanian, “Surface-tension-driven flow in a glass melt,” J. Am. Ceram. Soc. 68(5), 254–259 (1985).
[CrossRef]

Sysoev, V. K.

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[CrossRef]

Tso, S. T.

S. T. Tso and J. A. Pask, “Reaction of fused-silica with hydrogen gas,” J. Am. Ceram. Soc. 65(9), 457–460 (1982).
[CrossRef]

Vignes, R. M.

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

Villarreal, F. J.

Wegner, P. J.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606–2616 (2010).
[CrossRef]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

Wholley, J. W.

J. F. Bacon, A. A. Hasapis, and J. W. Wholley, “Viscosity and density of molten silica and high silica content glasses,” Phys. Chem. Glasses 1(3), 90–98 (1960).

Widmayer, C. C.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

Yakovlev, A. A.

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[CrossRef]

Yang, S. T.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606–2616 (2010).
[CrossRef]

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

S. Elhadj, S. T. Yang, M. J. Matthews, D. J. Cooke, J. D. Bude, M. Johnson, M. Feit, V. Draggoo, and S. E. Bisson, “High temperature thermographic measurements of laser heated silica,” Proc. SPIE 7504, 750419 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73(2), 199–208 (2001).

Appl. Phys. Lett. (1)

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

Atmos. Environ. (1)

W. J. Massman, “A review of the molecular diffusivities of H2O, CO2, CH4, CO, O-3, SO2, NH3, N2O, NO, and NO2 in air, O-2 and N-2 near STP,” Atmos. Environ. 32(6), 1111–1127 (1998).
[CrossRef]

Chem. Rev. (1)

H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev. 60(4), 331–362 (1960).
[CrossRef]

Ind. Eng. Chem. Res. (1)

T. Addona and R. J. Munz, “Silica decomposition using a transferred arc process,” Ind. Eng. Chem. Res. 38(6), 2299–2309 (1999).
[CrossRef]

Inorg. Mater. (1)

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[CrossRef]

Int. J. Heat Mass Transfer (2)

S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a vertical plate,” Int. J. Heat Mass Transfer 18(11), 1323–1329 (1975).
[CrossRef]

S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer 18(9), 1049–1053 (1975).
[CrossRef]

J. Am. Ceram. Soc. (6)

H. Y. Sohn, “Overall rate analysis of the gaseous reduction of stable oxides incorporating chemical kinetics, mass transfer, and chemical equilibrium,” J. Am. Ceram. Soc. 89(3), 1006–1013 (2006).
[CrossRef]

T. J. McNeil, R. Cole, and R. S. Subramanian, “Surface-tension-driven flow in a glass melt,” J. Am. Ceram. Soc. 68(5), 254–259 (1985).
[CrossRef]

G. Han and H. Y. Sohn, “Kinetics of the hydrogen reduction of silica incorporating the effect of gas-volume change upon reaction,” J. Am. Ceram. Soc. 88(4), 882–888 (2005).
[CrossRef]

D. M. Mattox and H. D. Smith, “Hydrogen surface etching of molten silica,” J. Am. Ceram. Soc. 71(8), C392–C394 (1988).
[CrossRef]

S. T. Tso and J. A. Pask, “Reaction of fused-silica with hydrogen gas,” J. Am. Ceram. Soc. 65(9), 457–460 (1982).
[CrossRef]

M. T. Lee, “Reaction of high-silica optical fibers with hydrofluoric-acid,” J. Am. Ceram. Soc. 67(2), C21–C22 (1984).
[CrossRef]

J. Appl. Phys. (4)

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. 2. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972).
[CrossRef]

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

A. Kar and J. Mazumder, “2-Dimensional model for material damage due to melting and vaporization during laser irradiation,” J. Appl. Phys. 68(8), 3884–3891 (1990).
[CrossRef]

J. Lightwave Technol. (1)

J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers - a review,” J. Lightwave Technol. 5(5), 712–733 (1987).
[CrossRef]

J. Non-Cryst. Solids (2)

R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5(2), 123–175 (1970).
[CrossRef]

J. F. Shackelford and J. S. Masaryk, “Thermodynamics of water and hydrogen solubility in fused silica,” J. Non-Cryst. Solids 21(1), 55–64 (1976).
[CrossRef]

J. Solid State Chem. (1)

R. A. Gardner, “Kinetics of silica reduction in hydrogen,” J. Solid State Chem. 9(4), 336–344 (1974).
[CrossRef]

J. Thermophys. Heat Transfer (1)

L. Pekker, N. Gimelshein, and S. Gimelshein, “Analytical and kinetic modeling of ablation process,” J. Thermophys. Heat Transfer 23(3), 473–478 (2009).

Metall. Mater. Trans. B (2)

H. Y. Sohn, “The influence of chemical equilibrium on fluid-solid reaction rates and the falsification of activation energy,” Metall. Mater. Trans. B 35(1), 121–131 (2004).
[CrossRef]

B. Ozturk and R. J. Fruehan, “The rate of formation of SiO by the reaction of CO or H2 with silica and silicate slags,” Metall. Mater. Trans. B 16(4), 801–806 (1985).

Opt. Express (2)

Phys. Chem. Glasses (1)

J. F. Bacon, A. A. Hasapis, and J. W. Wholley, “Viscosity and density of molten silica and high silica content glasses,” Phys. Chem. Glasses 1(3), 90–98 (1960).

Proc. SPIE (3)

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

S. Elhadj, S. T. Yang, M. J. Matthews, D. J. Cooke, J. D. Bude, M. Johnson, M. Feit, V. Draggoo, and S. E. Bisson, “High temperature thermographic measurements of laser heated silica,” Proc. SPIE 7504, 750419 (2009).
[CrossRef]

Trans. Metall. Soc. AIME (1)

K. Schwerdtfeger, “Rate of silica reduction in reducing gases at 1500 Degrees C,” Trans. Metall. Soc. AIME 236(8), 1152–1156 (1966).

Vacuum (1)

A. de Rudnay, “Evaporation of silica,” Vacuum 1(3), 204–205 (1951).
[CrossRef]

Other (3)

F*A*C*T (Facility for the Analysis of Chemical Thermodynamics) http://www.crct.polymtl.ca/fact/fact.htm .

CRC Handbook of Chemistry and Physics, 65th ed. (CRC Press, Boca Raton, FL, USA, 1984).

G. Montano-Miranda and A. Muscat, “Etching of silicon dioxide with gas phase HF and water: Initiation, bulk etching, and termination,” in Proceedings of Ultra Clean Processing of Semiconductor Surfaces VIII, P. Mertens, M. Meuris, and M. Heyns, eds. (Trans Tech Publications Ltd, Antwerp, Belgium, 2006), pp. 3–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(A) Schematic of the experimental setup used for evaporation of fused silica with CO2 laser heating. A nozzle is used to bring an impinging gas coincidently with the laser beam at a controlled flow rate of the treatment gas. (B) The laser-based evaporation produces a pit for which the surface profile is measured using white light interferometry. The surface depth profile through the center of the pit is shown, along with the corresponding surface temperature profile, T(K), captured in situ with an infrared camera. The bottom pit depth, d, is used for estimating the evaporation rate at the corresponding peak temperature.

Fig. 2
Fig. 2

Representative measurements of the evaporation rate dependence on the gas feed volumetric flow rate for a surface treatment peak T=2880K.

Fig. 3
Fig. 3

Measurements of the temperature dependent fused silica evaporation rates for the gases indicated. Dashed lines and arrows are used to guide the eye and emphasize the apparent trends in the reduction of the temperature dependence of the evaporation rate at higher temperatures. The solid line represents the estimated evaporation rates from the Hertz-Knudsen equation based on the reported vapor pressures of SiO in [8] and an evaporation coefficient of one. The values from the H-K model are scaled by a factor of ×1/30 for clarity.

Fig. 4
Fig. 4

(A) Experimental evaporation rates for the evaporation of fused silica in pure N2 relative to evaporation in air. Relative evaporation rates were also calculated based on reported values ΔG° for reaction (1) from the sources indicated in the F*A*C*T database [34] and in the Schick review [8]. The data was fitted (solid line) to extract an effective temperature-dependent ΔG° for reaction (1). (B) The corresponding predicted molar fractions of [SiO]eq product are shown for each gas using ΔG° reported in [34] (dashed lines), and compared to those based on a ΔG° obtained from the fitting in (A) (solid lines).

Fig. 5
Fig. 5

(A) Experimental evaporation rates in 5% H2, 95% N2 gas relative to evaporation in pure N2 (R(H2)/R(N2)). Relative evaporation rates were also calculated based on reported ΔG° values for reaction (2) from Ref. [34] database. The data was fitted to extract an effective temperature-dependent ΔG° for reaction (2) from which the R(H2)/R(N2) ratio could be plotted (solid line). (B) The experimental R(H2)/R(N2) in (A) are compared to the calculated ratio based on a range of ΔG°/RT values for an initial H2 concentration of 5% (dashed line) and for a fixed 5% H2 concentration (solid line).

Fig. 6
Fig. 6

Experimental evaporation rates in the indicated gases were used to extract the mass transfer coefficient parameters from the fitted data (solid lines).

Tables (1)

Tables Icon

Table 1 Effective entropy and enthalpy values derived from fitting of the temperature dependent evaporation rate data obtained between 2600 K and 3000 K for laser heated silica. The corresponding experimental reaction free energies are calculated from ΔG° = ΔH°-TΔS° and compared to reported ΔG° values from [34] in parenthesis. Likewise, least-square fitting parameters for the mass transfer coefficient of the SiO evaporation product, hm, were derived from the measured evaporation rates in air, pure nitrogen, and in a 5% hydrogen-95% nitrogen gas mixture. As discussed in the text, the evaporation rate data were fitted to yield an apparent activation energy, Ea, and a pre-exponential Am in the Arrhenius relation, R(T) = Amexp(-Ea/RT) for each gas used in this study.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Si O 2 (l)SiO(g)+ 1 2 O 2 (g)
Si O 2 (l)+ H 2 (g)SiO(g)+ H 2 O(g)
R h m [ SiO ] eq
( n iSiO +ξ+α n T ) ( n iO2 +1/2ξ n T ) 0.5 P 3/2 = K p1 ( T )
( n i H 2 α n T ) 1 ( n iSiO +α+ξ n T )( n i H 2 O +α n T )P= K p2 ( T )
Sh=CS c m R e n

Metrics