Abstract

We have experimentally and numerically investigated photo-induced voltage (PIV) effect across a Au film with a dielectric grating. We observed strongly enhanced voltage when surface plasmon polariton (SPP) is excited. It was found that electrons in the Au film are driven to the propagation direction of SPP. We have numerically shown that dissipative force called as scattering force well elucidates the experimental result for the first time. It is also clarified that this effect can be attributed to the momentum transfer from SPP to free carriers in the Au film. Thus the effect we observed can be called as surface plasmon drag effect in analogy with the photon drag effect.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Gibson, M. F. Kimmit, and A. C. Walker, “Photon drag in Germanium,” Appl. Phys. Lett. 17, 75–77 (1970).
    [CrossRef]
  2. A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metals,” Appl. Phys. Lett. 87, 091118 (2005).
    [CrossRef]
  3. N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
    [CrossRef]
  4. T. Hatano, B. Nishikawa, M. Iwanaga, and T. Ishihara, “Optical rectification effect in 1D metallic photonic crystal slabs with asymmetric unit cell,” Opt. Express 16, 8236–8241 (2008).
    [CrossRef] [PubMed]
  5. A. English, C. Cheng, L. Lowe, M. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).
  6. J. E. Goff and W. L. Shaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
    [CrossRef]
  7. V. L. Gurevich, R. Laoho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. 69, 180–183 (1992).
    [CrossRef] [PubMed]
  8. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
    [CrossRef]
  9. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
    [CrossRef]
  10. T. Hatano, T. Ishihara, S. G. Tikhoodev, and N. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
    [CrossRef] [PubMed]
  11. M. Durach, A. Rusina, and M. I. Stockmann, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103, 186801 (2009).
    [CrossRef] [PubMed]
  12. V. D. Barger and M. G. Olsson, Classical Electricity and Magnetism: A Contemporary Perspective (Allyn & Bacon, 1987).
  13. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasi guided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
    [CrossRef]
  14. L. Li, “Formulation of comparison of two recursive matrix algorithms for modeling of layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [CrossRef]
  15. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  16. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  17. M. Onoda and T. Ochiai, “Designing spinning Bloch states in 2D photonic crystals for stringing nanoparticles,” Phys. Rev. Lett. 103, 033903 (2009).
    [CrossRef] [PubMed]
  18. V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B 48, 8307–8316 (1993).
    [CrossRef]
  19. W. L. Barnes, T. W. Preist, S. C. Kitoson, J.R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
    [CrossRef]
  20. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
    [CrossRef]
  21. A. V. Kats, S. Shavel’ev, V. A. Yampol’skii, and F. Nori, “Left-handed interfaces for electromagnetic surface waves,” Phys. Rev. Lett. 98, 073901 (2007).
    [CrossRef] [PubMed]

2011 (1)

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[CrossRef]

2009 (3)

T. Hatano, T. Ishihara, S. G. Tikhoodev, and N. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[CrossRef] [PubMed]

M. Durach, A. Rusina, and M. I. Stockmann, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103, 186801 (2009).
[CrossRef] [PubMed]

M. Onoda and T. Ochiai, “Designing spinning Bloch states in 2D photonic crystals for stringing nanoparticles,” Phys. Rev. Lett. 103, 033903 (2009).
[CrossRef] [PubMed]

2008 (2)

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

T. Hatano, B. Nishikawa, M. Iwanaga, and T. Ishihara, “Optical rectification effect in 1D metallic photonic crystal slabs with asymmetric unit cell,” Opt. Express 16, 8236–8241 (2008).
[CrossRef] [PubMed]

2007 (1)

A. V. Kats, S. Shavel’ev, V. A. Yampol’skii, and F. Nori, “Left-handed interfaces for electromagnetic surface waves,” Phys. Rev. Lett. 98, 073901 (2007).
[CrossRef] [PubMed]

2005 (1)

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metals,” Appl. Phys. Lett. 87, 091118 (2005).
[CrossRef]

2002 (1)

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasi guided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

2000 (1)

1998 (1)

1997 (2)

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
[CrossRef]

J. E. Goff and W. L. Shaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
[CrossRef]

1996 (1)

1995 (1)

W. L. Barnes, T. W. Preist, S. C. Kitoson, J.R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

1993 (1)

V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B 48, 8307–8316 (1993).
[CrossRef]

1992 (1)

V. L. Gurevich, R. Laoho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. 69, 180–183 (1992).
[CrossRef] [PubMed]

1973 (1)

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[CrossRef]

1970 (1)

A. F. Gibson, M. F. Kimmit, and A. C. Walker, “Photon drag in Germanium,” Appl. Phys. Lett. 17, 75–77 (1970).
[CrossRef]

Barger, V. D.

V. D. Barger and M. G. Olsson, Classical Electricity and Magnetism: A Contemporary Perspective (Allyn & Bacon, 1987).

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitoson, J.R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

Chaumet, P. C.

Cheng, C.

A. English, C. Cheng, L. Lowe, M. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).

Cotter, N. P. K.

W. L. Barnes, T. W. Preist, S. C. Kitoson, J.R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

Djurišic, A. B.

Durach, M.

M. Durach, A. Rusina, and M. I. Stockmann, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103, 186801 (2009).
[CrossRef] [PubMed]

Elazar, J. M.

English, A.

A. English, C. Cheng, L. Lowe, M. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).

Gibson, A. F.

A. F. Gibson, M. F. Kimmit, and A. C. Walker, “Photon drag in Germanium,” Appl. Phys. Lett. 17, 75–77 (1970).
[CrossRef]

Gippius, N.

T. Hatano, T. Ishihara, S. G. Tikhoodev, and N. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[CrossRef] [PubMed]

Gippius, N. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasi guided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Goff, J. E.

J. E. Goff and W. L. Shaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
[CrossRef]

Gordon, J. P.

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[CrossRef]

Gu, L.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[CrossRef]

Gurevich, V. L.

V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B 48, 8307–8316 (1993).
[CrossRef]

V. L. Gurevich, R. Laoho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. 69, 180–183 (1992).
[CrossRef] [PubMed]

Hatano, T.

T. Hatano, T. Ishihara, S. G. Tikhoodev, and N. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[CrossRef] [PubMed]

T. Hatano, B. Nishikawa, M. Iwanaga, and T. Ishihara, “Optical rectification effect in 1D metallic photonic crystal slabs with asymmetric unit cell,” Opt. Express 16, 8236–8241 (2008).
[CrossRef] [PubMed]

Ishihara, T.

T. Hatano, T. Ishihara, S. G. Tikhoodev, and N. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[CrossRef] [PubMed]

T. Hatano, B. Nishikawa, M. Iwanaga, and T. Ishihara, “Optical rectification effect in 1D metallic photonic crystal slabs with asymmetric unit cell,” Opt. Express 16, 8236–8241 (2008).
[CrossRef] [PubMed]

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metals,” Appl. Phys. Lett. 87, 091118 (2005).
[CrossRef]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasi guided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Iwanaga, M.

Kats, A. V.

A. V. Kats, S. Shavel’ev, V. A. Yampol’skii, and F. Nori, “Left-handed interfaces for electromagnetic surface waves,” Phys. Rev. Lett. 98, 073901 (2007).
[CrossRef] [PubMed]

Kawata, S.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

Kimmit, M. F.

A. F. Gibson, M. F. Kimmit, and A. C. Walker, “Photon drag in Germanium,” Appl. Phys. Lett. 17, 75–77 (1970).
[CrossRef]

Kitoson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitoson, J.R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

Kuang, W.

A. English, C. Cheng, L. Lowe, M. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).

Laiho, R.

V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B 48, 8307–8316 (1993).
[CrossRef]

Laoho, R.

V. L. Gurevich, R. Laoho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. 69, 180–183 (1992).
[CrossRef] [PubMed]

Lashkul, A. V.

V. L. Gurevich, R. Laoho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. 69, 180–183 (1992).
[CrossRef] [PubMed]

Li, L.

Lowe, L.

A. English, C. Cheng, L. Lowe, M. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).

Majewski, M. L.

Muljarov, E. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasi guided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Nash, D. J.

W. L. Barnes, T. W. Preist, S. C. Kitoson, J.R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

Nieto-Vesperinas, M.

Nishikawa, B.

Noginov, M. A.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[CrossRef]

Noginova, N.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[CrossRef]

Nori, F.

A. V. Kats, S. Shavel’ev, V. A. Yampol’skii, and F. Nori, “Left-handed interfaces for electromagnetic surface waves,” Phys. Rev. Lett. 98, 073901 (2007).
[CrossRef] [PubMed]

Ochiai, T.

M. Onoda and T. Ochiai, “Designing spinning Bloch states in 2D photonic crystals for stringing nanoparticles,” Phys. Rev. Lett. 103, 033903 (2009).
[CrossRef] [PubMed]

Okamoto, T.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

Olsson, M. G.

V. D. Barger and M. G. Olsson, Classical Electricity and Magnetism: A Contemporary Perspective (Allyn & Bacon, 1987).

Onoda, M.

M. Onoda and T. Ochiai, “Designing spinning Bloch states in 2D photonic crystals for stringing nanoparticles,” Phys. Rev. Lett. 103, 033903 (2009).
[CrossRef] [PubMed]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitoson, J.R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

Rakic, A. D.

Rusina, A.

M. Durach, A. Rusina, and M. I. Stockmann, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103, 186801 (2009).
[CrossRef] [PubMed]

Sambles, J.R.

W. L. Barnes, T. W. Preist, S. C. Kitoson, J.R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

Shaich, W. L.

J. E. Goff and W. L. Shaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
[CrossRef]

Shavel’ev, S.

A. V. Kats, S. Shavel’ev, V. A. Yampol’skii, and F. Nori, “Left-handed interfaces for electromagnetic surface waves,” Phys. Rev. Lett. 98, 073901 (2007).
[CrossRef] [PubMed]

Shih, M.

A. English, C. Cheng, L. Lowe, M. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).

Simonen, J.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

Soimo, J.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[CrossRef]

Stockmann, M. I.

M. Durach, A. Rusina, and M. I. Stockmann, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103, 186801 (2009).
[CrossRef] [PubMed]

Tikhodeev, S. G.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasi guided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Tikhoodev, S. G.

T. Hatano, T. Ishihara, S. G. Tikhoodev, and N. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[CrossRef] [PubMed]

Vengurlekar, A. S.

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metals,” Appl. Phys. Lett. 87, 091118 (2005).
[CrossRef]

Walker, A. C.

A. F. Gibson, M. F. Kimmit, and A. C. Walker, “Photon drag in Germanium,” Appl. Phys. Lett. 17, 75–77 (1970).
[CrossRef]

Yablonskii, A. L.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasi guided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Yakim, A. V.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[CrossRef]

Yampol’skii, V. A.

A. V. Kats, S. Shavel’ev, V. A. Yampol’skii, and F. Nori, “Left-handed interfaces for electromagnetic surface waves,” Phys. Rev. Lett. 98, 073901 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. F. Gibson, M. F. Kimmit, and A. C. Walker, “Photon drag in Germanium,” Appl. Phys. Lett. 17, 75–77 (1970).
[CrossRef]

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metals,” Appl. Phys. Lett. 87, 091118 (2005).
[CrossRef]

A. English, C. Cheng, L. Lowe, M. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).

J. Opt. Soc. Am. A (2)

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[CrossRef]

Phys. Rev. B (6)

J. E. Goff and W. L. Shaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
[CrossRef]

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[CrossRef]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasi guided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B 48, 8307–8316 (1993).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitoson, J.R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

Phys. Rev. Lett. (5)

A. V. Kats, S. Shavel’ev, V. A. Yampol’skii, and F. Nori, “Left-handed interfaces for electromagnetic surface waves,” Phys. Rev. Lett. 98, 073901 (2007).
[CrossRef] [PubMed]

M. Onoda and T. Ochiai, “Designing spinning Bloch states in 2D photonic crystals for stringing nanoparticles,” Phys. Rev. Lett. 103, 033903 (2009).
[CrossRef] [PubMed]

V. L. Gurevich, R. Laoho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. 69, 180–183 (1992).
[CrossRef] [PubMed]

T. Hatano, T. Ishihara, S. G. Tikhoodev, and N. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[CrossRef] [PubMed]

M. Durach, A. Rusina, and M. I. Stockmann, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103, 186801 (2009).
[CrossRef] [PubMed]

Other (1)

V. D. Barger and M. G. Olsson, Classical Electricity and Magnetism: A Contemporary Perspective (Allyn & Bacon, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a): Schematic of the structure. (b): Experimental setup.

Fig. 2
Fig. 2

(a): Experimental result of reflection spectra. (b): Numerical calculation of reflection spectra.

Fig. 3
Fig. 3

(a): Distribution of magnetic field intensity at 885 nm. (b): Distribution of magnetic field intensity at 1046 nm. In both cases calculation was done at normal incidence. The white lines depict the shapes of the dielectric grating and the Au film.

Fig. 4
Fig. 4

(a): Experimental result of PIV measurement. (b): Calculation result of PIV evaluated by the microscopic model.

Fig. 5
Fig. 5

Calculation result of PIV evaluated by the microscopic model with experimental result at 6°. The order of the voltage in experiment is tenfold bigger than that in calculation.

Fig. 6
Fig. 6

Pseudo color plot of absorption spectra. GM mode and MS mode are the SPP modes excited at the grating/metal and metal/substrate interface, respectively.

Fig. 7
Fig. 7

(a): Distribution of x component of scattering force. (b): Distribution of x component of Poynting vector force.(c): Distribution of x component of force on polarization. Calculation was done at the wavelength 925 nm and the incident angle 6 °. The maximum absolute value of each force is also shown.

Fig. 8
Fig. 8

(a): Distribution of x component of scattering force. (b): Distribution of x component of Poynting vector force.(c): Distribution of x component of force on polarization. Calculation was done at the wavelength 802 nm and the incident angle 6 °. The maximum absolute value of each force is also shown.

Fig. 9
Fig. 9

(a): Calculation result of absorption and diffraction spectra. (b): Schematic of the situation where the incident wavelength is 925 nm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

V ( λ ) = C [ 1 2 A ( λ ) sin 2 θ λ Λ g g D g ( λ ) cos θ ] ,
F D C = α R ( ω ) 4 | E ˜ | 2 + α I ( ω ) 2 Im { E ˜ j * E ˜ j } ,
F grad Tot = d r α R ( ω ) 4 | E ˜ | 2 = d S α R ( ω ) 4 | E ˜ | 2 ,
d S α R ( ω ) 4 | E ˜ | 2 | x = d x α R ( ω ) 4 | E ˜ | 2 = α R ( ω ) 4 ( | E ˜ | 2 | x = d x / 2 | E ˜ | 2 | x = d x / 2 ) ,
E ˜ ( x = d x / 2 ) = E ˜ ( x = d x / 2 ) e i k x d x .
F ¯ Scat , x = 1 v v d r F Scat , x ( r ) ,
V = 1 e d x F ¯ Scat , x ,
α I ( ω ) 2 Im { E ˜ j * E ˜ j } = α I ( ω ) 2 [ ω c Re { E ˜ × H ˜ * } + 1 2 × Im { E ˜ × E ˜ * } + 4 π Im { ρ ˜ E ˜ * } ] ,
S tot = v 1 d z d x S + v 2 d z d x S ,
V ( λ ) = C [ λ Λ g D g ( λ ) g ] ,
V ( λ ) C [ λ Λ D s , 1 ( λ ) ] .

Metrics