Abstract

We report the successful fabrication of mid-infrared waveguides written in a gallium lanthanum sulphide (GLS) substrate via the ultrafast laser inscription technique. Single mode guiding at 2485 nm and 3850 nm is observed. Spectral broadening spanning 1500 nm (−15dB points) is demonstrated under 3850 nm excitation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
    [CrossRef]
  2. P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
    [CrossRef]
  3. P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15(19), 12529–12538 (2007).
    [CrossRef] [PubMed]
  4. M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan,” Opt. Express 13(10), 3594–3599 (2005).
    [CrossRef] [PubMed]
  5. R. Grille, G. Martin, L. Labadie, B. Arezki, P. Kern, T. Lewi, A. Tsun, and A. Katzir, “Single mode mid-infrared silver halide asymmetric flat waveguide obtained from crystal extrusion,” Opt. Express 17(15), 12516–12522 (2009).
    [CrossRef] [PubMed]
  6. L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242(2-3), 99–103 (1998).
    [CrossRef]
  7. C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express 18(25), 26744–26753 (2010).
    [CrossRef] [PubMed]
  8. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [CrossRef]
  9. Z. G. Lian, W. J. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009).
    [CrossRef] [PubMed]
  10. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2Se3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010).
    [CrossRef] [PubMed]
  11. M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin Chalcogenide films prepared by pulsed laser deposition – new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
    [CrossRef]
  12. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  13. Y. Cheng, K. Sugioka, and K. Midorikawa, “Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application,” Opt. Express 13(18), 7225–7232 (2005).
    [CrossRef] [PubMed]
  14. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
    [CrossRef] [PubMed]
  15. H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
    [CrossRef]
  16. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [CrossRef] [PubMed]
  17. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
    [CrossRef] [PubMed]
  18. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [CrossRef]
  19. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
    [CrossRef] [PubMed]
  20. M. A. Hughes, W. Yang, and D. W. Hewak, “Spectral broadening in femtosecond laser written waveguides in Chalcogenide glass,” J. Opt. Soc. Am. B 26(7), 1370–1378 (2009).
    [CrossRef]
  21. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [CrossRef]
  22. J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se- based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
    [CrossRef]
  23. X. Orignac, D. Barbier, X. Min Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-Gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
    [CrossRef]
  24. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express 10(20), 1083–1098 (2002).
    [PubMed]
  25. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  26. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express 14(6), 2151–2157 (2006).
    [CrossRef] [PubMed]

2011

2010

2009

2008

S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

2007

2006

D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express 14(6), 2151–2157 (2006).
[CrossRef] [PubMed]

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin Chalcogenide films prepared by pulsed laser deposition – new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[CrossRef]

2005

2004

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se- based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

2003

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

2002

1999

X. Orignac, D. Barbier, X. Min Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-Gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

1998

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242(2-3), 99–103 (1998).
[CrossRef]

1996

1990

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Almeida, R. M.

X. Orignac, D. Barbier, X. Min Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-Gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Arezki, B.

Arnold, C. B.

Bakhirkin, Y.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Balu, M.

Barbier, D.

X. Orignac, D. Barbier, X. Min Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-Gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Barton, J. S.

Bennion, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

Benson, T. M.

Birks, T. A.

Bland-Hawthorn, J.

Blömer, D.

Boesewetter, D. E.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[CrossRef]

Bookey, H. T.

Boussard-Plédel, C.

P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15(19), 12529–12538 (2007).
[CrossRef] [PubMed]

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[CrossRef]

Broeng, J.

Bureau, B.

P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15(19), 12529–12538 (2007).
[CrossRef] [PubMed]

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[CrossRef]

Campbell, S.

Cerullo, G.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[CrossRef] [PubMed]

Chen, W. J.

Cheng, L. K.

Cheng, Y.

Chiodo, N.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[CrossRef] [PubMed]

Collier, J.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[CrossRef]

Curl, R. F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Davis, K. M.

Dreisow, F.

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

Eaton, S. M.

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

Faber, A. J.

Fender, A.

Fraser, M.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Frumar, M.

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin Chalcogenide films prepared by pulsed laser deposition – new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

Frumarova, B.

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin Chalcogenide films prepared by pulsed laser deposition – new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

Fuflyigin, V. N.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se- based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Furniss, D.

Genty, G.

Gielesen, W. L. M.

Gmachl, C. F.

Gopinath, J. T.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se- based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Grille, R.

Hagan, D. J.

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan,” Opt. Express 13(10), 3594–3599 (2005).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Hales, J.

Herman, P. R.

Hewak, D. W.

Hirao, K.

Ho, S.

Houizot, P.

Hrdlicka, M.

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin Chalcogenide films prepared by pulsed laser deposition – new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

Hughes, M. A.

Ippen, E. P.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se- based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Jedelsky, J.

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin Chalcogenide films prepared by pulsed laser deposition – new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

Jha, A.

Juncker, C.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[CrossRef]

Kaivola, M.

Kar, A. K.

Katzir, A.

Kern, P.

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

King, W. A.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se- based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Kohoutek, T.

Kosterev, A.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Labadie, L.

Le Coq, D.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[CrossRef]

Le Foulgoc, K.

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242(2-3), 99–103 (1998).
[CrossRef]

Le Neindre, L.

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242(2-3), 99–103 (1998).
[CrossRef]

Lehtonen, M.

Leon-Saval, S. G.

Lewi, T.

Lewicki, R.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Li, J. Z.

Lian, Z. G.

Lucas, J.

Lucas, P.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[CrossRef]

Ludvigsen, H.

Macpherson, W. N.

Madsen, C. K.

Martin, G.

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

McCarthy, O.

X. Orignac, D. Barbier, X. Min Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-Gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Midorikawa, K.

Min Du, X.

X. Orignac, D. Barbier, X. Min Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-Gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Miura, K.

Mujagic, E.

Nemec, P.

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin Chalcogenide films prepared by pulsed laser deposition – new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

Ng, M. L.

Nolte, S.

Orava, J.

Orignac, X.

X. Orignac, D. Barbier, X. Min Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-Gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Osellame, R.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[CrossRef] [PubMed]

Pan, W. J.

Pereira do Carmo, J.

Psaila, N. D.

Reid, D. T.

Riley, M. R.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Schreiber, T.

Seddon, A. B.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Shen, S.

Shurgalin, M.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se- based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Smektala, F.

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242(2-3), 99–103 (1998).
[CrossRef]

So, S.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Solis, M. A.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[CrossRef]

Soljacic, M.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se- based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Sugimoto, N.

Sugioka, K.

Szameit, A.

Thomson, R. R.

Tittel, F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Tsay, C.

Tsun, A.

Tünnermann, A.

Van Nijnatten, P. A.

Van Stryland, E. W.

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan,” Opt. Express 13(10), 3594–3599 (2005).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Wagner, T.

Z. G. Lian, W. J. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009).
[CrossRef] [PubMed]

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin Chalcogenide films prepared by pulsed laser deposition – new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Wysocki, G.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Yang, W.

Yeatman, E.

X. Orignac, D. Barbier, X. Min Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-Gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

Zha, Y.

Zhang, H.

Zhang, X. H.

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242(2-3), 99–103 (1998).
[CrossRef]

Appl. Phys. B

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Electron. Lett.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[CrossRef]

J. Appl. Phys.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se- based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

J. Non-Cryst. Solids

M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin Chalcogenide films prepared by pulsed laser deposition – new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids 352(6-7), 544–561 (2006).
[CrossRef]

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242(2-3), 99–103 (1998).
[CrossRef]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2Se3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express 10(20), 1083–1098 (2002).
[PubMed]

D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express 14(6), 2151–2157 (2006).
[CrossRef] [PubMed]

C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express 18(25), 26744–26753 (2010).
[CrossRef] [PubMed]

P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15(19), 12529–12538 (2007).
[CrossRef] [PubMed]

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan,” Opt. Express 13(10), 3594–3599 (2005).
[CrossRef] [PubMed]

R. Grille, G. Martin, L. Labadie, B. Arezki, P. Kern, T. Lewi, A. Tsun, and A. Katzir, “Single mode mid-infrared silver halide asymmetric flat waveguide obtained from crystal extrusion,” Opt. Express 17(15), 12516–12522 (2009).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, and K. Midorikawa, “Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application,” Opt. Express 13(18), 7225–7232 (2005).
[CrossRef] [PubMed]

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
[CrossRef] [PubMed]

S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[CrossRef] [PubMed]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater.

X. Orignac, D. Barbier, X. Min Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-Gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999).
[CrossRef]

Sens. Actuators B Chem.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[CrossRef]

Other

G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Facet images for waveguides I (upper) and II (lower) taken in transmission mode, (b) corresponding mode profile images [WG I guiding at 2485 nm. WG II guiding at 3850 nm.] and (c) their associated mode cross-sections in vertical and horizontal directions.

Fig. 2
Fig. 2

Experimental closed aperture z-scan trace for GLS at 2485 nm. Theoretical (red line) fitted with n2 = 7.8 x 10−19 m2W−1.

Fig. 3
Fig. 3

Diagram of experimental set-up.

Fig. 4
Fig. 4

(a) Graph showing normalized transmission spectra of waveguide І for incident femtosecond pulse energies of 72 and 130 nJ. For clarity, the graphs for the transmission spectra are each offset by 5 dB. (b) Linear scale normalized output of waveguide I with 72 nJ incident. (c) Linear scale normalized output of waveguide I with 130 nJ incident. Arrows indicate SPM peaks. Estimated coupled pulse energies were 36.5 and 65.8 nJ.

Fig. 5
Fig. 5

Graph showing OPA pump input and spectrally broadened output after propagation through waveguide ІІ with incident pulse energies of 115 nJ onto the coupling objective. Estimated coupled pulse energies were 57 nJ.

Metrics