Abstract

Upconversion of images is a generic method for shifting the spectral content of entire images. A comprehensive theory for upconversion of incoherent light images is presented and compared against experiments. In particular we consider the important case for upconversion of infinity corrected light. We show that the spatial resolution for upconversion of incoherent light images is better than for the corresponding coherent image upconversion case. The fundamental differences between upconversion of coherent and incoherent images are investigated theoretically and experimentally. The theory includes the general case of upconversion using TEMnm modes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Midwinter, “Image conversion from 1.6 µ to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–70 (1968).
    [CrossRef]
  2. J. Warner, “Spatial resolution measurements in up-conversion from 10.6 m to the visible,” Appl. Phys. Lett. 13(10), 360–362 (1968).
    [CrossRef]
  3. J. F. Weller and R. A. Andrews, “Resolution measurements in parametric upconversion of images,” Opt. Quantum Electron. 2(3), 171–176 (1970).
    [CrossRef]
  4. R. W. Boyd and C. H. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31(7), 440–442 (1977).
    [CrossRef]
  5. R. A. Andrews, “IR image parametric up-conversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
    [CrossRef]
  6. A. H. Firester, “Image Upconversion: Part III,” J. Appl. Phys. 41(2), 703–709 (1970).
    [CrossRef]
  7. J. Falk and W. B. Tiffany, “Theory of parametric upconversion of thermal images,” J. Appl. Phys. 43(9), 3762–3769 (1972).
    [CrossRef]
  8. K. F. Hulme and J. Warner, “Theory of thermal imaging using infrared to visible image up-conversion,” Appl. Opt. 11(12), 2956–2964 (1972).
    [CrossRef] [PubMed]
  9. W. Chiou, “Geometric optics theory of parametric image upconversion,” J. Appl. Phys. 42(5), 1985–1993 (1971).
    [CrossRef]
  10. F. Devaux, A. Mosset, E. Lantz, S. Monneret, and H. Le Gall, “Image Upconversion from the Visible to the UV Domain: Application to Dynamic UV Microstereolithography,” Appl. Opt. 40(28), 4953–4957 (2001).
    [CrossRef] [PubMed]
  11. P. M. Vaughan and R. Trebino, “Optical-parametric-amplification imaging of complex objects,” Opt. Express 19(9), 8920–8929 (2011).
    [CrossRef] [PubMed]
  12. J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “High-resolution two-dimensional image upconversion of incoherent light,” Opt. Lett. 35(22), 3796–3798 (2010).
    [CrossRef] [PubMed]
  13. S. Baldelli, “Sensing: Infrared image upconversion,” Nat. Photonics 5(2), 75–76 (2011).
    [CrossRef]
  14. C. Pedersen, E. Karamehmedović, J. S. Dam, and P. Tidemand-Lichtenberg, “Enhanced 2D-image upconversion using solid-state lasers,” Opt. Express 17(23), 20885–20890 (2009).
    [CrossRef] [PubMed]
  15. M. J. Missey, V. Dominic, L. E. Myers, and R. C. Eckardt, “Diffusion-bonded stacks of periodically poled lithium niobate,” Opt. Lett. 23(9), 664–666 (1998).
    [CrossRef] [PubMed]
  16. J. Hellström, V. Pasiskevicius, H. Karlsson, and F. Laurell, “High-power optical parametric oscillation in large-aperture periodically poled KTiOPO(4),” Opt. Lett. 25(3), 174–176 (2000).
    [CrossRef] [PubMed]

2011 (2)

2010 (1)

2009 (1)

2001 (1)

2000 (1)

1998 (1)

1977 (1)

R. W. Boyd and C. H. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31(7), 440–442 (1977).
[CrossRef]

1972 (2)

K. F. Hulme and J. Warner, “Theory of thermal imaging using infrared to visible image up-conversion,” Appl. Opt. 11(12), 2956–2964 (1972).
[CrossRef] [PubMed]

J. Falk and W. B. Tiffany, “Theory of parametric upconversion of thermal images,” J. Appl. Phys. 43(9), 3762–3769 (1972).
[CrossRef]

1971 (1)

W. Chiou, “Geometric optics theory of parametric image upconversion,” J. Appl. Phys. 42(5), 1985–1993 (1971).
[CrossRef]

1970 (3)

R. A. Andrews, “IR image parametric up-conversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[CrossRef]

A. H. Firester, “Image Upconversion: Part III,” J. Appl. Phys. 41(2), 703–709 (1970).
[CrossRef]

J. F. Weller and R. A. Andrews, “Resolution measurements in parametric upconversion of images,” Opt. Quantum Electron. 2(3), 171–176 (1970).
[CrossRef]

1968 (2)

J. E. Midwinter, “Image conversion from 1.6 µ to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–70 (1968).
[CrossRef]

J. Warner, “Spatial resolution measurements in up-conversion from 10.6 m to the visible,” Appl. Phys. Lett. 13(10), 360–362 (1968).
[CrossRef]

Andrews, R. A.

J. F. Weller and R. A. Andrews, “Resolution measurements in parametric upconversion of images,” Opt. Quantum Electron. 2(3), 171–176 (1970).
[CrossRef]

R. A. Andrews, “IR image parametric up-conversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[CrossRef]

Baldelli, S.

S. Baldelli, “Sensing: Infrared image upconversion,” Nat. Photonics 5(2), 75–76 (2011).
[CrossRef]

Boyd, R. W.

R. W. Boyd and C. H. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31(7), 440–442 (1977).
[CrossRef]

Chiou, W.

W. Chiou, “Geometric optics theory of parametric image upconversion,” J. Appl. Phys. 42(5), 1985–1993 (1971).
[CrossRef]

Dam, J. S.

Devaux, F.

Dominic, V.

Eckardt, R. C.

Falk, J.

J. Falk and W. B. Tiffany, “Theory of parametric upconversion of thermal images,” J. Appl. Phys. 43(9), 3762–3769 (1972).
[CrossRef]

Firester, A. H.

A. H. Firester, “Image Upconversion: Part III,” J. Appl. Phys. 41(2), 703–709 (1970).
[CrossRef]

Hellström, J.

Hulme, K. F.

Karamehmedovic, E.

Karlsson, H.

Lantz, E.

Laurell, F.

Le Gall, H.

Midwinter, J. E.

J. E. Midwinter, “Image conversion from 1.6 µ to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–70 (1968).
[CrossRef]

Missey, M. J.

Monneret, S.

Mosset, A.

Myers, L. E.

Pasiskevicius, V.

Pedersen, C.

Tidemand-Lichtenberg, P.

Tiffany, W. B.

J. Falk and W. B. Tiffany, “Theory of parametric upconversion of thermal images,” J. Appl. Phys. 43(9), 3762–3769 (1972).
[CrossRef]

Townes, C. H.

R. W. Boyd and C. H. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31(7), 440–442 (1977).
[CrossRef]

Trebino, R.

Vaughan, P. M.

Warner, J.

K. F. Hulme and J. Warner, “Theory of thermal imaging using infrared to visible image up-conversion,” Appl. Opt. 11(12), 2956–2964 (1972).
[CrossRef] [PubMed]

J. Warner, “Spatial resolution measurements in up-conversion from 10.6 m to the visible,” Appl. Phys. Lett. 13(10), 360–362 (1968).
[CrossRef]

Weller, J. F.

J. F. Weller and R. A. Andrews, “Resolution measurements in parametric upconversion of images,” Opt. Quantum Electron. 2(3), 171–176 (1970).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

J. E. Midwinter, “Image conversion from 1.6 µ to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–70 (1968).
[CrossRef]

J. Warner, “Spatial resolution measurements in up-conversion from 10.6 m to the visible,” Appl. Phys. Lett. 13(10), 360–362 (1968).
[CrossRef]

R. W. Boyd and C. H. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31(7), 440–442 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Andrews, “IR image parametric up-conversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[CrossRef]

J. Appl. Phys. (3)

A. H. Firester, “Image Upconversion: Part III,” J. Appl. Phys. 41(2), 703–709 (1970).
[CrossRef]

J. Falk and W. B. Tiffany, “Theory of parametric upconversion of thermal images,” J. Appl. Phys. 43(9), 3762–3769 (1972).
[CrossRef]

W. Chiou, “Geometric optics theory of parametric image upconversion,” J. Appl. Phys. 42(5), 1985–1993 (1971).
[CrossRef]

Nat. Photonics (1)

S. Baldelli, “Sensing: Infrared image upconversion,” Nat. Photonics 5(2), 75–76 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

J. F. Weller and R. A. Andrews, “Resolution measurements in parametric upconversion of images,” Opt. Quantum Electron. 2(3), 171–176 (1970).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

An object is emitting incoherent light, which can be modeled as points emitting spherical waves. A lens, f, transforms these spherical waves to plane waves. The plane waves are cropped by an on-axis Gaussian upconverting beam and shifted to a different wavelength. These waves exit the non-linear crystal at a smaller angle due to momentum conservation. The individually upconverted Gaussian waves forms an image after a lens, f1, and must be added incoherently (as intensities) in the image plane.

Fig. 2
Fig. 2

(a) Theoretical calculation of a coherently illuminated cross. (b) as (a) but for incoherent illumination. (c) Coherent illuminated cross (experiment). (d) Incoherent illuminated cross (experiment). (e) Line traces of theory and experiments. Notice how the coherent crosses appear slimmer and are at a quarter intensity (half E-field) at the intersection with the actual cross.

Fig. 3
Fig. 3

(a) Experimentally obtained image (incoherent), from [12]. (b) Theoretically calculated upconverted image (incoherent). (c) Theoretically upconverted image (coherent). Notice that (a) and (b) are very similar except for the shot noise. The coherent upconversion, using the same parameters shows the expected poorer resolution as previously calculated. Notice further how the finer features are dimmed considerably in the coherent upconversion case.

Fig. 4
Fig. 4

In this example the result of upconversion of a line source with a Gaussian TEM00, TEM01, TEM02, and TEM03 mode respectively, is shown. Sections of the upconverted images are compared to the theoretically predicted images in the lower sets of curves, as modeled from a finite width line source. We note that the central lines in the TEM03 appear sharper (narrower) individually, albeit with poorer contrast. The line width can be accurately determined by fitting the measured intensity distribution in the higher order modes, whereas assessing it from the near TEM00 is much harder.

Fig. 5
Fig. 5

(a) Experimentally acquired image, and (b) theoretically calculated image based on incoherent theory, (c) shows the upconverted image using coherent theory [14]. All three images use a TEM01 laser mode for upconversion.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 λ 3 = 1 λ 2 + 1 λ 1
L Image ( x,y,θ,ϕ, λ 3 )= L SFG ( θ f 1 ,ϕ f 1 , x f 1 , y f 1 , λ 3 )
L Image ( x,y,θ,ϕ, λ 3 )= L SFG ( θ f 1 ,ϕ f 1 , x f 1 , y f 1 , λ 3 ) =Csin c 2 ( Δkl 2 ) I Gauss ( θ f 1 ,ϕ f 1 , λ 2 ) ( λ 1 λ 3 ) 2 L 2f ( λ 1 λ 3 x f 1 , λ 1 λ 3 y f 1 , λ 1 ) =Csin c 2 ( Δkl 2 ) I Gauss ( θ f 1 ,ϕ f 1 , λ 2 ) ( λ 1 λ 3 ) 2 L Object ( λ 1 λ 3 f f 1 x, λ 1 λ 3 f f 1 y, λ 1 )
I Image ( x,y, λ 3 )= 8 π 2 d eff 2 l 2 sinc 2 ( Δkl 2 ) n 1 n 2 n 3 ε 0 c λ 3 2 P Gauss ( λ 1 f 1 λ 3 ) 2 L Object ( λ 1 λ 3 f f 1 x, λ 1 λ 3 f f 1 y, λ 1 )( 2π w 0 2 ( λ 3 f 1 ) 2 e 2( x 2 + y 2 ) π 2 w 0 2 ( λ 3 f 1 ) 2 )
Q E max =C I Gauss ( 0,0 ) λ 3 λ 1 = 16π d eff 2 l 2 P Gauss n 1 n 2 n 3 ε 0 c λ 1 λ 3 w 0 2
I Image nm ( x,y, λ 3 )= 8 π 2 d eff 2 l 2 sinc 2 ( Δkl 2 ) n 1 n 2 n 3 ε 0 c λ 3 2 P Gauss ( λ 1 f 1 λ 3 ) 2 L Object ( λ 1 λ 3 f f 1 x, λ 1 λ 3 f f 1 y, λ 1 )( 2π w 0 2 n!m! 2 n+m ( λ 3 f 1 ) 2 H n 2 ( 2 π w 0 λ 3 f 1 x ) H m 2 ( 2 π w 0 λ 3 f 1 y ) e 2( x 2 + y 2 ) π 2 w 0 2 ( λ 3 f 1 ) 2 )

Metrics