Abstract

In this study, we report for the first time to our knowledge theoretical investigation of modulation responses of injection-locked mid-infrared quantum cascade lasers (QCLs) at wavelengths of 4.6 μm and 9 μm, respectively. It is shown through a three-level rate equations model that the direct intensity modulation of QCLs gives the maximum modulation bandwidths of ~7 GHz at 4.6 μm and ~20 GHz at 9 μm. By applying the injection locking scheme, we find that the modulation bandwidths of up to ~30 GHz and ~70 GHz can be achieved for QCLs at 4.6 μm and 9 μm, respectively, with an injection ratio of 5 dB. The result also shows that an ultrawide modulation bandwidth of more than 200 GHz is possible with a 10 dB injection ratio for QCLs at 9 μm. An important characteristic of injection-locked QCLs is the nonexistence of unstable locking region in the locking map, in contrast to their diode laser counterparts. We attribute this to the ultra-short upper laser state lifetimes of QCLs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
    [CrossRef]
  2. E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
    [CrossRef]
  3. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
    [CrossRef] [PubMed]
  4. N. B. Terry, N. A. Naderi, M. Pochet, A. J. Moscho, L. F. Lester, and V. Kovanis, “Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser,” Electron. Lett. 44(15), 904–905 (2008).
    [CrossRef]
  5. S. H. Lee, D. Parekh, T. Shindo, W. J. Yang, P. Guo, D. Takahashi, N. Nishiyama, C. J. Chang-Hasnain, and S. Arai, “Bandwidth enhancement of injection-locked distributed reflector lasers with wirelike active regions,” Opt. Express 18(16), 16370–16378 (2010).
    [CrossRef] [PubMed]
  6. R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett. 37(21), 1290–1291 (2001).
    [CrossRef]
  7. R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38(4), 181–183 (2002).
    [CrossRef]
  8. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).
  9. Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92(10), 101105 (2008).
    [CrossRef]
  10. P. Corrigan, R. Martini, E. A. Whittaker, and C. Bethea, “Quantum cascade lasers and the Kruse model in free space optical communication,” Opt. Express 17(6), 4355–4359 (2009).
    [CrossRef] [PubMed]
  11. C. Y. L. Cheung, P. S. Spencer, and K. A. Shore, “Modulation bandwidth optimization for unipolar intersubband semiconductor lasers,” IEE Proc.: Optoelectron. 144, 44–47 (1997).
    [CrossRef]
  12. C. Y. Cheung and K. A. Shore, “Self-consistent analysis of dc modulation response of unipolar semiconductor lasers,” J. Mod. Opt. 45(6), 1219–1229 (1998).
    [CrossRef]
  13. N. Mustafa, L. Pesquera, C. Y. L. Cheung, and K. A. Shore, “Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers,” IEEE Photon. Technol. Lett. 11(5), 527–529 (1999).
    [CrossRef]
  14. M. K. Haldar, “A simplified analysis of direct intensity modulation of quantum cascade lasers,” IEEE J. Quantum Electron. 41(11), 1349–1355 (2005).
    [CrossRef]
  15. R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001).
    [CrossRef]
  16. S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
    [CrossRef]
  17. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
  18. Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
    [CrossRef]
  19. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
    [CrossRef]
  20. D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers,” J. Appl. Phys. 91(11), 9019–9026 (2002).
    [CrossRef]
  21. F. Rana and R. J. Ram, “Current noise and photon noise in quantum cascade lasers,” Phys. Rev. B 65(12), 125313 (2002).
    [CrossRef]
  22. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  23. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
    [CrossRef]
  24. J. von Staden, T. Gensty, W. Elsäßer, G. Giuliani, and C. Mann, “Measurements of the α factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique,” Opt. Lett. 31(17), 2574–2576 (2006).
    [CrossRef] [PubMed]
  25. M. Ishihara, T. Morimoto, S. Furuta, K. Kasahara, N. Akikusa, K. Fujita, and T. Edamura, “Linewidth enhancement factor of quantum cascade lasers with single phonon resonance-continuum depopulation structure on Peltier cooler,” Electron. Lett. 45(23), 1168–1169 (2009).
    [CrossRef]
  26. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
    [CrossRef] [PubMed]
  27. P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35 GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
    [CrossRef]
  28. C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor laser,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
    [CrossRef]

2010 (2)

2009 (4)

M. Ishihara, T. Morimoto, S. Furuta, K. Kasahara, N. Akikusa, K. Fujita, and T. Edamura, “Linewidth enhancement factor of quantum cascade lasers with single phonon resonance-continuum depopulation structure on Peltier cooler,” Electron. Lett. 45(23), 1168–1169 (2009).
[CrossRef]

P. Corrigan, R. Martini, E. A. Whittaker, and C. Bethea, “Quantum cascade lasers and the Kruse model in free space optical communication,” Opt. Express 17(6), 4355–4359 (2009).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

2008 (5)

E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[CrossRef]

E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
[CrossRef] [PubMed]

N. B. Terry, N. A. Naderi, M. Pochet, A. J. Moscho, L. F. Lester, and V. Kovanis, “Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser,” Electron. Lett. 44(15), 904–905 (2008).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92(10), 101105 (2008).
[CrossRef]

2007 (1)

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[CrossRef]

2006 (2)

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

J. von Staden, T. Gensty, W. Elsäßer, G. Giuliani, and C. Mann, “Measurements of the α factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique,” Opt. Lett. 31(17), 2574–2576 (2006).
[CrossRef] [PubMed]

2005 (1)

M. K. Haldar, “A simplified analysis of direct intensity modulation of quantum cascade lasers,” IEEE J. Quantum Electron. 41(11), 1349–1355 (2005).
[CrossRef]

2004 (1)

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

2002 (3)

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38(4), 181–183 (2002).
[CrossRef]

D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers,” J. Appl. Phys. 91(11), 9019–9026 (2002).
[CrossRef]

F. Rana and R. J. Ram, “Current noise and photon noise in quantum cascade lasers,” Phys. Rev. B 65(12), 125313 (2002).
[CrossRef]

2001 (2)

R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett. 37(21), 1290–1291 (2001).
[CrossRef]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001).
[CrossRef]

1999 (1)

N. Mustafa, L. Pesquera, C. Y. L. Cheung, and K. A. Shore, “Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers,” IEEE Photon. Technol. Lett. 11(5), 527–529 (1999).
[CrossRef]

1998 (1)

C. Y. Cheung and K. A. Shore, “Self-consistent analysis of dc modulation response of unipolar semiconductor lasers,” J. Mod. Opt. 45(6), 1219–1229 (1998).
[CrossRef]

1997 (1)

C. Y. L. Cheung, P. S. Spencer, and K. A. Shore, “Modulation bandwidth optimization for unipolar intersubband semiconductor lasers,” IEE Proc.: Optoelectron. 144, 44–47 (1997).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

1985 (2)

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor laser,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[CrossRef]

Aellen, T.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

Akikusa, N.

M. Ishihara, T. Morimoto, S. Furuta, K. Kasahara, N. Akikusa, K. Fujita, and T. Edamura, “Linewidth enhancement factor of quantum cascade lasers with single phonon resonance-continuum depopulation structure on Peltier cooler,” Electron. Lett. 45(23), 1168–1169 (2009).
[CrossRef]

Alton, J.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[CrossRef]

Arai, S.

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

Bai, Y.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92(10), 101105 (2008).
[CrossRef]

Baillargeon, J. N.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38(4), 181–183 (2002).
[CrossRef]

R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett. 37(21), 1290–1291 (2001).
[CrossRef]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001).
[CrossRef]

Barbieri, S.

P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35 GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
[CrossRef]

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[CrossRef]

Beere, H.

Beere, H. E.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[CrossRef]

Bethea, C.

P. Corrigan, R. Martini, E. A. Whittaker, and C. Bethea, “Quantum cascade lasers and the Kruse model in free space optical communication,” Opt. Express 17(6), 4355–4359 (2009).
[CrossRef] [PubMed]

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38(4), 181–183 (2002).
[CrossRef]

Blaser, S.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

Breuil, N.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[CrossRef]

Cannon, B. D.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
[CrossRef] [PubMed]

Capasso, F.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38(4), 181–183 (2002).
[CrossRef]

R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett. 37(21), 1290–1291 (2001).
[CrossRef]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Chang-Hasnain, C.

Chang-Hasnain, C. J.

Cheung, C. Y.

C. Y. Cheung and K. A. Shore, “Self-consistent analysis of dc modulation response of unipolar semiconductor lasers,” J. Mod. Opt. 45(6), 1219–1229 (1998).
[CrossRef]

Cheung, C. Y. L.

N. Mustafa, L. Pesquera, C. Y. L. Cheung, and K. A. Shore, “Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers,” IEEE Photon. Technol. Lett. 11(5), 527–529 (1999).
[CrossRef]

C. Y. L. Cheung, P. S. Spencer, and K. A. Shore, “Modulation bandwidth optimization for unipolar intersubband semiconductor lasers,” IEE Proc.: Optoelectron. 144, 44–47 (1997).
[CrossRef]

Cho, A. Y.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38(4), 181–183 (2002).
[CrossRef]

R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett. 37(21), 1290–1291 (2001).
[CrossRef]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Corrigan, P.

Darvish, S. R.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92(10), 101105 (2008).
[CrossRef]

Davies, A. G.

Dhillon, S. S.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[CrossRef]

Diehl, L.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

Dutta, N. K.

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor laser,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

Edamura, T.

M. Ishihara, T. Morimoto, S. Furuta, K. Kasahara, N. Akikusa, K. Fujita, and T. Edamura, “Linewidth enhancement factor of quantum cascade lasers with single phonon resonance-continuum depopulation structure on Peltier cooler,” Electron. Lett. 45(23), 1168–1169 (2009).
[CrossRef]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

Elsäßer, W.

Evans, A.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92(10), 101105 (2008).
[CrossRef]

Faist, J.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Fan, J. Y.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

Filloux, P.

Fujita, K.

M. Ishihara, T. Morimoto, S. Furuta, K. Kasahara, N. Akikusa, K. Fujita, and T. Edamura, “Linewidth enhancement factor of quantum cascade lasers with single phonon resonance-continuum depopulation structure on Peltier cooler,” Electron. Lett. 45(23), 1168–1169 (2009).
[CrossRef]

Furuta, S.

M. Ishihara, T. Morimoto, S. Furuta, K. Kasahara, N. Akikusa, K. Fujita, and T. Edamura, “Linewidth enhancement factor of quantum cascade lasers with single phonon resonance-continuum depopulation structure on Peltier cooler,” Electron. Lett. 45(23), 1168–1169 (2009).
[CrossRef]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

Gellie, P.

Gensty, T.

Giovannini, M.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

Giuliani, G.

Gmachl, C.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38(4), 181–183 (2002).
[CrossRef]

R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett. 37(21), 1290–1291 (2001).
[CrossRef]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001).
[CrossRef]

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

Guo, P.

Haldar, M. K.

M. K. Haldar, “A simplified analysis of direct intensity modulation of quantum cascade lasers,” IEEE J. Quantum Electron. 41(11), 1349–1355 (2005).
[CrossRef]

Harrison, P.

D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers,” J. Appl. Phys. 91(11), 9019–9026 (2002).
[CrossRef]

Henry, C. H.

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor laser,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

Hoyler, N.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Hvozdara, L.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

Hwang, H. Y.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38(4), 181–183 (2002).
[CrossRef]

R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett. 37(21), 1290–1291 (2001).
[CrossRef]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001).
[CrossRef]

Ikonic, Z.

D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers,” J. Appl. Phys. 91(11), 9019–9026 (2002).
[CrossRef]

Indjin, D.

D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers,” J. Appl. Phys. 91(11), 9019–9026 (2002).
[CrossRef]

Ishihara, M.

M. Ishihara, T. Morimoto, S. Furuta, K. Kasahara, N. Akikusa, K. Fujita, and T. Edamura, “Linewidth enhancement factor of quantum cascade lasers with single phonon resonance-continuum depopulation structure on Peltier cooler,” Electron. Lett. 45(23), 1168–1169 (2009).
[CrossRef]

Jacobsen, G.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[CrossRef]

Kan, H.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

Kasahara, K.

M. Ishihara, T. Morimoto, S. Furuta, K. Kasahara, N. Akikusa, K. Fujita, and T. Edamura, “Linewidth enhancement factor of quantum cascade lasers with single phonon resonance-continuum depopulation structure on Peltier cooler,” Electron. Lett. 45(23), 1168–1169 (2009).
[CrossRef]

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

Kelsall, R. W.

D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers,” J. Appl. Phys. 91(11), 9019–9026 (2002).
[CrossRef]

Khanna, S. P.

Kovanis, V.

N. B. Terry, N. A. Naderi, M. Pochet, A. J. Moscho, L. F. Lester, and V. Kovanis, “Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser,” Electron. Lett. 44(15), 904–905 (2008).
[CrossRef]

Kumar, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Lampin, J. F.

Lau, E. K.

Lee, S. H.

Lester, L. F.

N. B. Terry, N. A. Naderi, M. Pochet, A. J. Moscho, L. F. Lester, and V. Kovanis, “Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser,” Electron. Lett. 44(15), 904–905 (2008).
[CrossRef]

Linfield, E. H.

Liu, H. C.

R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett. 37(21), 1290–1291 (2001).
[CrossRef]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001).
[CrossRef]

Lyakh, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

Maineult, W.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[CrossRef]

Mann, C.

Manquest, C.

Martini, R.

P. Corrigan, R. Martini, E. A. Whittaker, and C. Bethea, “Quantum cascade lasers and the Kruse model in free space optical communication,” Opt. Express 17(6), 4355–4359 (2009).
[CrossRef] [PubMed]

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38(4), 181–183 (2002).
[CrossRef]

R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett. 37(21), 1290–1291 (2001).
[CrossRef]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001).
[CrossRef]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

Mogensen, F.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[CrossRef]

Morimoto, T.

M. Ishihara, T. Morimoto, S. Furuta, K. Kasahara, N. Akikusa, K. Fujita, and T. Edamura, “Linewidth enhancement factor of quantum cascade lasers with single phonon resonance-continuum depopulation structure on Peltier cooler,” Electron. Lett. 45(23), 1168–1169 (2009).
[CrossRef]

Moscho, A. J.

N. B. Terry, N. A. Naderi, M. Pochet, A. J. Moscho, L. F. Lester, and V. Kovanis, “Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser,” Electron. Lett. 44(15), 904–905 (2008).
[CrossRef]

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

Mustafa, N.

N. Mustafa, L. Pesquera, C. Y. L. Cheung, and K. A. Shore, “Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers,” IEEE Photon. Technol. Lett. 11(5), 527–529 (1999).
[CrossRef]

Myers, T. L.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
[CrossRef] [PubMed]

Naderi, N. A.

N. B. Terry, N. A. Naderi, M. Pochet, A. J. Moscho, L. F. Lester, and V. Kovanis, “Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser,” Electron. Lett. 44(15), 904–905 (2008).
[CrossRef]

Nguyen, J.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92(10), 101105 (2008).
[CrossRef]

Nishiyama, N.

Olesen, H.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[CrossRef]

Olsson, N. A.

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor laser,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

Paiella, R.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38(4), 181–183 (2002).
[CrossRef]

R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett. 37(21), 1290–1291 (2001).
[CrossRef]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001).
[CrossRef]

Parekh, D.

Patel, C. K. N.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

Patel, N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Pesquera, L.

N. Mustafa, L. Pesquera, C. Y. L. Cheung, and K. A. Shore, “Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers,” IEEE Photon. Technol. Lett. 11(5), 527–529 (1999).
[CrossRef]

Pflügl, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

Pochet, M.

N. B. Terry, N. A. Naderi, M. Pochet, A. J. Moscho, L. F. Lester, and V. Kovanis, “Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser,” Electron. Lett. 44(15), 904–905 (2008).
[CrossRef]

Ram, R. J.

F. Rana and R. J. Ram, “Current noise and photon noise in quantum cascade lasers,” Phys. Rev. B 65(12), 125313 (2002).
[CrossRef]

Rana, F.

F. Rana and R. J. Ram, “Current noise and photon noise in quantum cascade lasers,” Phys. Rev. B 65(12), 125313 (2002).
[CrossRef]

Razeghi, M.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92(10), 101105 (2008).
[CrossRef]

Ritchie, D.

Ritchie, D. A.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[CrossRef]

Sagnes, I.

Shindo, T.

Shore, K. A.

N. Mustafa, L. Pesquera, C. Y. L. Cheung, and K. A. Shore, “Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers,” IEEE Photon. Technol. Lett. 11(5), 527–529 (1999).
[CrossRef]

C. Y. Cheung and K. A. Shore, “Self-consistent analysis of dc modulation response of unipolar semiconductor lasers,” J. Mod. Opt. 45(6), 1219–1229 (1998).
[CrossRef]

C. Y. L. Cheung, P. S. Spencer, and K. A. Shore, “Modulation bandwidth optimization for unipolar intersubband semiconductor lasers,” IEE Proc.: Optoelectron. 144, 44–47 (1997).
[CrossRef]

Sirtori, C.

P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35 GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
[CrossRef]

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38(4), 181–183 (2002).
[CrossRef]

R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett. 37(21), 1290–1291 (2001).
[CrossRef]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Slivken, S.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92(10), 101105 (2008).
[CrossRef]

Spencer, P. S.

C. Y. L. Cheung, P. S. Spencer, and K. A. Shore, “Modulation bandwidth optimization for unipolar intersubband semiconductor lasers,” IEE Proc.: Optoelectron. 144, 44–47 (1997).
[CrossRef]

Sung, H.-K.

Takahashi, D.

Tanban-Ek, T.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

Taubman, M. S.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
[CrossRef] [PubMed]

Terazzi, R.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

Terry, N. B.

N. B. Terry, N. A. Naderi, M. Pochet, A. J. Moscho, L. F. Lester, and V. Kovanis, “Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser,” Electron. Lett. 44(15), 904–905 (2008).
[CrossRef]

Tsekoun, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

von Staden, J.

Wang, Q. J.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

Wang, X. J.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

Whittaker, E. A.

P. Corrigan, R. Martini, E. A. Whittaker, and C. Bethea, “Quantum cascade lasers and the Kruse model in free space optical communication,” Opt. Express 17(6), 4355–4359 (2009).
[CrossRef] [PubMed]

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38(4), 181–183 (2002).
[CrossRef]

R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett. 37(21), 1290–1291 (2001).
[CrossRef]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001).
[CrossRef]

Williams, R. M.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
[CrossRef] [PubMed]

Wu, M. C.

Yamanishi, M.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

Yang, W. J.

Zhang, W.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92(10), 101105 (2008).
[CrossRef]

Zhao, X.

Appl. Phys. Lett. (7)

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett. 92, 111110 (2008).

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92(10), 101105 (2008).
[CrossRef]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001).
[CrossRef]

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

Electron. Lett. (4)

M. Ishihara, T. Morimoto, S. Furuta, K. Kasahara, N. Akikusa, K. Fujita, and T. Edamura, “Linewidth enhancement factor of quantum cascade lasers with single phonon resonance-continuum depopulation structure on Peltier cooler,” Electron. Lett. 45(23), 1168–1169 (2009).
[CrossRef]

N. B. Terry, N. A. Naderi, M. Pochet, A. J. Moscho, L. F. Lester, and V. Kovanis, “Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser,” Electron. Lett. 44(15), 904–905 (2008).
[CrossRef]

R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett. 37(21), 1290–1291 (2001).
[CrossRef]

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38(4), 181–183 (2002).
[CrossRef]

IEE Proc.: Optoelectron. (1)

C. Y. L. Cheung, P. S. Spencer, and K. A. Shore, “Modulation bandwidth optimization for unipolar intersubband semiconductor lasers,” IEE Proc.: Optoelectron. 144, 44–47 (1997).
[CrossRef]

IEEE J. Quantum Electron. (5)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[CrossRef]

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[CrossRef]

M. K. Haldar, “A simplified analysis of direct intensity modulation of quantum cascade lasers,” IEEE J. Quantum Electron. 41(11), 1349–1355 (2005).
[CrossRef]

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor laser,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Mustafa, L. Pesquera, C. Y. L. Cheung, and K. A. Shore, “Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers,” IEEE Photon. Technol. Lett. 11(5), 527–529 (1999).
[CrossRef]

J. Appl. Phys. (1)

D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers,” J. Appl. Phys. 91(11), 9019–9026 (2002).
[CrossRef]

J. Mod. Opt. (1)

C. Y. Cheung and K. A. Shore, “Self-consistent analysis of dc modulation response of unipolar semiconductor lasers,” J. Mod. Opt. 45(6), 1219–1229 (1998).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

F. Rana and R. J. Ram, “Current noise and photon noise in quantum cascade lasers,” Phys. Rev. B 65(12), 125313 (2002).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Normalized modulation response of mid-infrared QCLs. (a) QCLs emitting at 4.6 μm with parameters shown in Table.1 (b) QCLs emitting at 9 μm with parameters shown in Table.1. The 3-dB bandwidth is indicated by the black dashed line.

Fig. 2
Fig. 2

Locking maps for QCLs emitting at (a) 4.6 μm and (b) 9 μm. The parameters used in the simulations are shown in Tables 1 and 4.

Fig. 3
Fig. 3

Normalized frequency response curves versus frequency detuning at a fixed injection ratio R = 5 dB, for the 9 μm QCL.

Fig. 4
Fig. 4

Normalized modulation response of mid-infrared QCLs under injection locking scheme. (a) QCLs emitting at 4.6 μm. (b) QCLs emitting at 9 μm. The inset show the corresponding poles (x) and zeros (), with the arrow indicating direction of increasing the injection current of the slave laser. The 3 dB bandwidth is indicated by the dashed line.

Tables (7)

Tables Icon

Table 1 Characteristic parameters of the state-of-the-art QCLs at 4.6 μm [17] and 9 μm [18] for direct modulation

Tables Icon

Table 2 Poles, zeros, and f3dB for QCLs at 4.6 μm

Tables Icon

Table 3 Poles, zeros, and f3dB for QCLs at 9 μm

Tables Icon

Table 4 Characteristic parameters of the state-of-the-art QCL at 4.6 μm [17] and 9 μm [18] for injection locking modulation

Tables Icon

Table 5 Poles, Zeros and 3-dB bandwidth f3dB for the QCL in Fig. 3.

Tables Icon

Table 6 Poles, zeros, and f3dB for the QCL in Fig. 4 (a)

Tables Icon

Table 7 Poles, zeros, and f3dB for Fig. 4 (b)

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

d N 3 dt =J N 3 τ 3 G N p ( N 3 N 2 )P
d N 2 dt = N 3 τ 3 + G N P ( N 3 N 2 )P N 2 τ 2
dP dt =G( N 3 N 2 )P P τ P
σ 32 = 4π e 2 z 32 2 ε 0 n neff λ 0 ( 2 γ 32 )
J 0 N 30 τ 3 G 0 ( N 3 0 N 2 0 ) P 0 =0
N 30 τ 3 + G 0 ( N 3 0 N 2 0 ) P 0 N 20 τ 2 =0
G( N 30 N 20 ) P 0 P 0 τ P =0
N 20 = J 0 τ 2
J 0 ( 1η ) N 30 N 20 τ 3 G 0 ( N 30 N 20 ) P 0 =0
( N 30 N 20 )= 1 N p G 0 τ p
P 0 = 1 G 0 τ 3 ( J 0 J th 1 )
N 30 = 1 N P G 0 τ P + J 0 τ 2
dΔ N 3 dt =ΔJ Δ N 3 τ 3 G 0 ( Δ N 3 Δ N 2 ) P 0 G 0 ( N 30 N 20 )ΔP
dΔ N 2 dt = Δ N 3 τ 3 + G 0 ( Δ N 3 Δ N 2 ) P 0 + G 0 ( N 30 N 20 )ΔP Δ N 2 τ 2
dΔP dt =G( Δ N 3 Δ N 2 ) P 0 +G( N 30 N 20 )ΔP ΔP τ P
[ s+ f 11 f 12 f 13 f 21 s+ f 22 f 23 f 31 f 32 s+ f 33 ][ Δ N 3 Δ N 2 ΔP ]=[ ΔJ 0 0 ]
f 11 = 1 τ 3 + G 0 P 0 f 21 =( 1 τ 3 + G 0 P 0 ) f 31 =G P 0 f 12 = G 0 P 0 f 22 = 1 τ 2 + G 0 P 0 f 32 =G P 0 f 13 = 1 τ P N P f 23 = 1 τ P N P f 33 =0
H( s )= ΔP ΔJ( 1η ) τ P N P = s A +1 B s 3 +C s 2 +Ds+1
A=( 1 η 1 ) 1 τ 3 B= τ P τ 2 N P G P 0 C=B( 2 G 0 P 0 + 1 τ 3 ( 1+ 1 η ) )D=B( 1 τ 2 G 0 P 0 + 1 τ 3 τ 2 +2G P 0 1 τ P N P )
d dt E SL (t){ jω(N)+ 1 2 [ N P G 0 ( N ) 1 τ p ] } E SL ( t )= f d E ML ( t )
E SL ( t )= E 0 ( t ) e j( ω 0 t+ ϕ 0 ( t ) )
E ML ( t )= E 1 ( t ) e j( ω 1 t+ ϕ 1 ( t ) )
d dt E 0 ( t )= 1 2 N P G 0 ΔN( t ) E 0 ( t )+ f d E 1 cosϕ( t )
d dt ϕ( t )= 1 2 α N P G 0 ΔN( t ) f d E 1 E 0 sinϕ( t )Δ ω inj
dN( t ) dt =J( N+ N 2 ) 2 τ 3 2 E 0 2 G 0 N+ N 2 τ 2
d N 2 ( t ) dt =( N+ N 2 ) 1 τ 3 + E 0 2 G 0 N N 2 τ 2
N 2th =( E fr 2 γ P + N th τ 3 ) τ 2 τ 3 τ 3 τ 2
γ P = G 0 N th
J th = N th 1 τ 3 τ 2
E fr 2 = J N th 1 τ 3 τ 2 γ P τ 3 τ 3 τ 2
Δ N 0 = 2 f d E 1 N p G 0 E 0 cos ϕ 0
ϕ 0 = sin 1 ( Δ ω inj E 0 f d E 1 1+ α 2 ) tan 1 α
N 20 =[ E 0 2 ( γ P + G 0 Δ N 0 )+ Δ N 0 τ 3 + N th τ 3 ] τ 2 τ 3 τ 3 τ 2
T 1 = 2 τ 2 τ 3 τ 3 τ 2
T 2 = 2 τ 3 + T 1 τ 3
E 0 3 ( 2 G 0 N P γ P + G 0 N P γ P T 1 ) E 0 2 2 G 0 f d E 1 cos ϕ 0 ( 2+ T 1 ) E 0 ( G 0 J N P N th G 0 N P T 2 ) 2 f d E 1 cos ϕ 0 T 2 =0
d dt ΔE= 1 2 N P G 0 Δ N 0 ΔE f d E 1 sin ϕ 0 Δϕ+ 1 2 N p G 0 E 0 ΔN
d dt Δϕ= f d E 1 E 0 2 sin ϕ 0 ΔE f d E 1 E 0 cos ϕ 0 Δϕ+ α 2 N P G 0 ΔN
d dt ΔN=ΔJ( 4 E 0 γ P +4 E 0 G 0 Δ N 0 )ΔE( 2 τ 3 +2 E 0 2 G 0 )ΔN+( 1 τ 2 2 τ 3 )Δ N 2
d dt Δ N 2 =( 2 E 0 γ P +2 G 0 Δ N 0 E 0 )ΔE+( 1 τ 3 + E 0 2 G 0 )ΔN+( 1 τ 3 1 τ 2 )Δ N 2
[ Q 11 +s Q 12 Q 13 Q 14 Q 21 Q 22 +s Q 23 Q 24 Q 31 Q 32 Q 33 +s Q 34 Q 41 Q 42 Q 43 Q 44 +s ][ ΔE Δϕ ΔN Δ N 2 ]=[ 0 0 ΔJ 0 ]
Q 11 = 1 2 G 0 Δ N 0 N P Q 12 = f d E 1 sin ϕ 0 Q 13 = 1 2 G 0 E 0 N P Q 14 =0 Q 21 = f d E 1 E 0 2 sin ϕ 0 Q 22 = f d E 1 E 0 cos ϕ 0 Q 23 = α 2 G 0 N P Q 24 =0 Q 31 =4 E 0 γ P +4 E 0 G 0 Δ N 0 Q 32 =0 Q 33 = 2 τ 3 +2 E 0 2 G 0 Q 34 = 2 τ 3 1 τ 2 Q 41 =( 2 E 0 γ P +2 G 0 Δ N 0 E 0 ) Q 42 =0 Q 43 =( 1 τ 3 + E 0 2 G 0 ) Q 44 =( 1 τ 2 1 τ 3 )
H( s )=G s 2 +Es+F s 4 +A s 3 +B s 2 +Cs+D
A= Q 11 + Q 22 + Q 33 + Q 44 B= Q 33 Q 44 + Q 11 Q 33 + Q 11 Q 44 + Q 22 Q 33 + Q 22 Q 44 + Q 11 Q 22 Q 21 Q 12 Q 31 Q 13 Q 34 Q 43 C= Q 11 Q 33 Q 44 + Q 22 Q 33 Q 44 + Q 33 Q 11 Q 22 + Q 44 Q 11 Q 22 Q 33 Q 21 Q 12 Q 44 Q 21 Q 12 Q 13 Q 31 Q 22 Q 13 Q 31 Q 44 + Q 12 Q 31 Q 23 + Q 13 Q 34 Q 41 Q 22 Q 43 Q 34 Q 11 Q 34 Q 43 D= Q 11 Q 22 Q 33 Q 44 Q 12 Q 21 Q 33 Q 44 + Q 12 Q 21 Q 43 Q 34 Q 13 Q 31 Q 22 Q 44 + Q 12 Q 31 Q 23 Q 44 Q 12 Q 23 Q 34 Q 41 + Q 13 Q 22 Q 34 Q 41 Q 11 Q 22 Q 34 Q 43 E= ( Q 12 Q 23 Q 13 Q 22 Q 13 Q 44 ) /Q 13 F= ( Q 12 Q 23 Q 44 Q 13 Q 22 Q 44 ) / Q 13 G= Q 13
H( s )= ( s | z 1 | +1 ) ( s | p 1 | +1 )( s | p 2 | +1 )( s | p 3 | +1 )
H( s )= 1 sD+1
f 3dB 3 2πD = 3 2π[ ( τ P +2 τ 2 )+ τ p G 0 P 0 τ 3 ]

Metrics