Abstract

A guided-mode resonance filter integrated in a waveguide cavity resonator constructed by two distributed Bragg reflectors is designed and fabricated for miniaturization of aperture size. Reflection efficiency of >90% and wavelength selectivity of 0.4 nm are predicted in the designed SiO2-based filter with 50-μm aperture by a numerical calculation using the finite-difference time-domain method. A maximum reflectance of 67% with 0.5-nm bandwidth is experimentally demonstrated by the fabricated device at around 850-nm wavelength.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
    [CrossRef]
  2. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [CrossRef]
  3. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  4. S. M. Norton, T. Erdogan, and G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14(3), 629–639 (1997).
    [CrossRef]
  5. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [CrossRef]
  6. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23(19), 1556–1558 (1998).
    [CrossRef] [PubMed]
  7. Z. Hegedus and R. Netterfield, “Low sideband guided-mode resonant filter,” Appl. Opt. 39(10), 1469–1473 (2000).
    [CrossRef] [PubMed]
  8. J. Saarinen, E. Noponen, and J. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34(9), 2560–2566 (1995).
    [CrossRef]
  9. R. R. Boye and R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39(21), 3649–3653 (2000).
    [CrossRef] [PubMed]
  10. A. T. Cannistra, M. K. Poutous, E. G. Johnson, and T. J. Suleski, “Performance of conformal guided mode resonance filters,” Opt. Lett. 36(7), 1155–1157 (2011).
    [CrossRef] [PubMed]
  11. Y. Ohtera, S. Iijima, and H. Yamada, “Guided-mode resonance in curved grating structures,” Opt. Lett. 36(9), 1689–1691 (2011).
    [CrossRef] [PubMed]
  12. A. Mizutani, H. Kikuta, and K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10(1), 13–18 (2003).
    [CrossRef]
  13. S. Ura, S. Murata, Y. Awatsuji, and K. Kintaka, “Design of resonance grating coupler,” Opt. Express 16(16), 12207–12213 (2008).
    [CrossRef] [PubMed]
  14. K. Kintaka, Y. Kita, K. Shimizu, H. Matsuoka, S. Ura, and J. Nishii, “Cavity-resonator-integrated grating input/output coupler for high-efficiency vertical coupling with a small aperture,” Opt. Lett. 35(12), 1989–1991 (2010).
    [CrossRef] [PubMed]
  15. Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
    [CrossRef] [PubMed]

2011 (2)

2010 (1)

2008 (2)

2003 (1)

A. Mizutani, H. Kikuta, and K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10(1), 13–18 (2003).
[CrossRef]

2000 (2)

1998 (1)

1997 (2)

S. M. Norton, T. Erdogan, and G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14(3), 629–639 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

1995 (1)

J. Saarinen, E. Noponen, and J. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34(9), 2560–2566 (1995).
[CrossRef]

1993 (1)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

1985 (1)

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[CrossRef]

Awatsuji, Y.

Boye, R. R.

Cannistra, A. T.

Chang-Hasnain, C. J.

Erdogan, T.

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Hegedus, Z.

Huang, M. C. Y.

Iijima, S.

Iwata, K.

A. Mizutani, H. Kikuta, and K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10(1), 13–18 (2003).
[CrossRef]

Johnson, E. G.

Kern, J.

Kikuta, H.

A. Mizutani, H. Kikuta, and K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10(1), 13–18 (2003).
[CrossRef]

Kintaka, K.

Kita, Y.

Kostuk, R. K.

Liu, Z. S.

Magnusson, R.

Mashev, L.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[CrossRef]

Matsuoka, H.

Mizutani, A.

A. Mizutani, H. Kikuta, and K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10(1), 13–18 (2003).
[CrossRef]

Moewe, M.

Morris, G. M.

Murata, S.

Netterfield, R.

Nishii, J.

Noponen, E.

J. Saarinen, E. Noponen, and J. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34(9), 2560–2566 (1995).
[CrossRef]

Norton, S. M.

Ohtera, Y.

Popov, E.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[CrossRef]

Poutous, M. K.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Saarinen, J.

J. Saarinen, E. Noponen, and J. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34(9), 2560–2566 (1995).
[CrossRef]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Shimizu, K.

Shin, D.

Suleski, T. J.

Tibuleac, S.

Turunen, J.

J. Saarinen, E. Noponen, and J. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34(9), 2560–2566 (1995).
[CrossRef]

Ura, S.

Wang, S. S.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

Yamada, H.

Young, P. P.

Zhou, Y.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[CrossRef]

Opt. Eng. (1)

J. Saarinen, E. Noponen, and J. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34(9), 2560–2566 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Opt. Rev. (1)

A. Mizutani, H. Kikuta, and K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10(1), 13–18 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic cross-sectional structure and refractive index profile of the designed CRIGF.

Fig. 2
Fig. 2

Calculated reflection and transmission spectra of the designed CRIGF with 50 μm aperture.

Fig. 3
Fig. 3

Calculated wavelength dependence of the conventional GMRF with the same composition and an infinite aperture.

Fig. 4
Fig. 4

(a) Microscope photograph of the fabricated CRIGF. SEM photographs of (b) GMRG and (c) DBR parts.

Fig. 5
Fig. 5

Schematic view of the optical experimental setup for measurement.

Fig. 6
Fig. 6

Measured wavelength dependence of (a) transmission and (b) reflection for the fabricated CRIGF with 50 μm aperture.

Metrics