Abstract

In laser-induced breakdown spectroscopy (LIBS), a pair of aluminum-plate walls were used to spatially confine the plasmas produced in air by a first laser pulse (KrF excimer laser) from chromium (Cr) targets with a second laser pulse (Nd:YAG laser at 532 nm, 360 mJ/pulse) introduced parallel to the sample surface to re-excite the plasmas. Optical emission enhancement was achieved by combing the spatial confinement and dual-pulse LIBS (DP-LIBS), and then optimized by adjusting the distance between the two walls and the interpulse delay time between both laser pulses. A significant enhancement factor of 168.6 for the emission intensity of the Cr lines was obtained at an excimer laser fluence of 5.6 J/cm2 using the combined spatial confinement and DP-LIBS, as compared with an enhancement factor of 106.1 was obtained with DP-LIBS only. The enhancement mechanisms based on shock wave theory and reheating in DP-LIBS are discussed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski and D. A. Cremers, Laser Induced Plasma and Applications, (Marcel Dekker, New York, 1989).
  2. U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 839–850 (2001).
    [CrossRef]
  3. L. M. Cabalín and J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73(6), 1120–1125 (2001).
    [CrossRef]
  4. A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42(30), 6205–6209 (2003).
    [CrossRef] [PubMed]
  5. N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. M. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates,” Spectrochim. Acta, B At. Spectrosc. 62B(12), 1528–1536 (2007).
    [CrossRef]
  6. F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17(2), 419–425 (2009).
    [CrossRef] [PubMed]
  7. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
    [CrossRef]
  8. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm,“Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc. 56(6), 637–649 (2001).
    [CrossRef]
  9. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
    [CrossRef]
  10. J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 685–693 (2001).
    [CrossRef]
  11. R. E. Neuhauser, U. Panne, and R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392(1), 47–54 (1999).
    [CrossRef]
  12. B. J. Marquardt, B. M. Cullum, T. J. Shaw, and S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” Proc. SPIE 3105, 203–212 (1997).
  13. C. M. Davies, H. H. Telle, and A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Anal. Bioanal. Chem. 355(7-8), 895–899 (1996).
    [CrossRef] [PubMed]
  14. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50(2), 222–233 (1996).
    [CrossRef]
  15. D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55(6), 186A–205A (2001).
    [CrossRef]
  16. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis,” Appl. Opt. 42(30), 6133–6137 (2003).
    [CrossRef] [PubMed]
  17. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54(3), 331–340 (2000).
    [CrossRef]
  18. J. Scaffidi, W. Pearman, J. C. Carter, and S. M. Angel, “Observations in collinear femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Spectrosc. 60(1), 65–71 (2006).
    [CrossRef] [PubMed]
  19. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42(30), 6099–6106 (2003).
    [CrossRef] [PubMed]
  20. R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
    [CrossRef]
  21. X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, “Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 48(13), 2551–2558 (2009).
    [CrossRef] [PubMed]
  22. X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
    [CrossRef] [PubMed]
  23. A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
    [CrossRef]
  24. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
    [CrossRef]
  25. L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
    [CrossRef]
  26. S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104(11), 113520 (2008).
    [CrossRef]
  27. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45(9), 1419–1423 (1991).
    [CrossRef]
  28. A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser-induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta, B At. Spectrosc. 62(8), 721–738 (2007).
    [CrossRef]
  29. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
    [CrossRef]
  30. L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
    [CrossRef] [PubMed]
  31. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO(2) laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
    [CrossRef] [PubMed]
  32. F. F. Chen, Introduction to Plasma Physics, (Plenum, New York, 1974).

2011

2010

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

2009

2008

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104(11), 113520 (2008).
[CrossRef]

2007

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO(2) laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
[CrossRef] [PubMed]

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser-induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta, B At. Spectrosc. 62(8), 721–738 (2007).
[CrossRef]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[CrossRef]

N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. M. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates,” Spectrochim. Acta, B At. Spectrosc. 62B(12), 1528–1536 (2007).
[CrossRef]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[CrossRef]

2006

2003

2002

R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
[CrossRef]

2001

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55(6), 186A–205A (2001).
[CrossRef]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm,“Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc. 56(6), 637–649 (2001).
[CrossRef]

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 839–850 (2001).
[CrossRef]

L. M. Cabalín and J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73(6), 1120–1125 (2001).
[CrossRef]

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 685–693 (2001).
[CrossRef]

2000

1999

R. E. Neuhauser, U. Panne, and R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392(1), 47–54 (1999).
[CrossRef]

1997

B. J. Marquardt, B. M. Cullum, T. J. Shaw, and S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” Proc. SPIE 3105, 203–212 (1997).

1996

C. M. Davies, H. H. Telle, and A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Anal. Bioanal. Chem. 355(7-8), 895–899 (1996).
[CrossRef] [PubMed]

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50(2), 222–233 (1996).
[CrossRef]

1991

Allen, S. D.

Angel, S. M.

Anglos, D.

Bäuerle, D.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 685–693 (2001).
[CrossRef]

Becker, C.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[CrossRef]

Bette, H.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm,“Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc. 56(6), 637–649 (2001).
[CrossRef]

Brust, J.

Brysch, A.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm,“Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc. 56(6), 637–649 (2001).
[CrossRef]

Cabalín, L. M.

L. M. Cabalín and J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73(6), 1120–1125 (2001).
[CrossRef]

Cai, Z. X.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Capitelli, M.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser-induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta, B At. Spectrosc. 62(8), 721–738 (2007).
[CrossRef]

Carter, J. C.

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

Colston, B. W.

Corsi, M.

Cremers, D. A.

Cristoforetti, G.

Cullum, B. M.

B. J. Marquardt, B. M. Cullum, T. J. Shaw, and S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” Proc. SPIE 3105, 203–212 (1997).

Davies, C. M.

C. M. Davies, H. H. Telle, and A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Anal. Bioanal. Chem. 355(7-8), 895–899 (1996).
[CrossRef] [PubMed]

De Giacomo, A.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser-induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta, B At. Spectrosc. 62(8), 721–738 (2007).
[CrossRef]

De Lucia, F. C.

F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17(2), 419–425 (2009).
[CrossRef] [PubMed]

N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. M. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates,” Spectrochim. Acta, B At. Spectrosc. 62B(12), 1528–1536 (2007).
[CrossRef]

De Pascale, O.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser-induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta, B At. Spectrosc. 62(8), 721–738 (2007).
[CrossRef]

Dell’Aglio, M.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser-induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta, B At. Spectrosc. 62(8), 721–738 (2007).
[CrossRef]

DeLucia, F. C.

Dottery, E. L.

Falk, H.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[CrossRef]

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

Ferris, M. J.

Fink, H.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 839–850 (2001).
[CrossRef]

Foster, L. E.

Gao, Y.

Gonzalez, J. J.

R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
[CrossRef]

Goode, S. R.

Gordon, R. J.

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104(11), 113520 (2008).
[CrossRef]

Gottfried, J. L.

Gruber, J.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 685–693 (2001).
[CrossRef]

Guo, L. B.

Harmon, R. S.

N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. M. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates,” Spectrochim. Acta, B At. Spectrosc. 62B(12), 1528–1536 (2007).
[CrossRef]

He, X. N.

Heitz, J.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 685–693 (2001).
[CrossRef]

Hidalgo, M.

Hilbk-Kortenbruck, F.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[CrossRef]

Hu, W.

Hu, Z.

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104(11), 113520 (2008).
[CrossRef]

Killinger, D. K.

Knight, A. K.

Kraushaar, M.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm,“Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc. 56(6), 637–649 (2001).
[CrossRef]

Laserna, J. J.

L. M. Cabalín and J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73(6), 1120–1125 (2001).
[CrossRef]

Legnaioli, S.

Leis, F.

Li, C. M.

Ling, H.

X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, “Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 48(13), 2551–2558 (2009).
[CrossRef] [PubMed]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[CrossRef]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[CrossRef]

Lu, Y. F.

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[CrossRef] [PubMed]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, “Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 48(13), 2551–2558 (2009).
[CrossRef] [PubMed]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[CrossRef]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[CrossRef]

Mao, S. S.

R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
[CrossRef]

Mao, X. L.

R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
[CrossRef]

Marquardt, B. J.

B. J. Marquardt, B. M. Cullum, T. J. Shaw, and S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” Proc. SPIE 3105, 203–212 (1997).

McMillan, N. J.

N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. M. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates,” Spectrochim. Acta, B At. Spectrosc. 62B(12), 1528–1536 (2007).
[CrossRef]

McNesby, K. L.

Miziolek, A. M.

N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. M. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates,” Spectrochim. Acta, B At. Spectrosc. 62B(12), 1528–1536 (2007).
[CrossRef]

Miziolek, A. W.

Mönch, I.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm,“Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc. 56(6), 637–649 (2001).
[CrossRef]

Neuhauser, R. E.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 839–850 (2001).
[CrossRef]

R. E. Neuhauser, U. Panne, and R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392(1), 47–54 (1999).
[CrossRef]

Niemax, K.

Niessner, R.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 839–850 (2001).
[CrossRef]

R. E. Neuhauser, U. Panne, and R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392(1), 47–54 (1999).
[CrossRef]

Noll, R.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm,“Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc. 56(6), 637–649 (2001).
[CrossRef]

Palleschi, V.

Panne, U.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 839–850 (2001).
[CrossRef]

R. E. Neuhauser, U. Panne, and R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392(1), 47–54 (1999).
[CrossRef]

Pearman, W.

Pender, J.

Peter, L.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm,“Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc. 56(6), 637–649 (2001).
[CrossRef]

Popov, A. M.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

Ramaseder, N.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 685–693 (2001).
[CrossRef]

Russo, R. E.

R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
[CrossRef]

Salvetti, A.

Samuels, A. C.

Scaffidi, J.

Scherbarth, N. L.

Sdorra, W.

Shaw, T. J.

B. J. Marquardt, B. M. Cullum, T. J. Shaw, and S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” Proc. SPIE 3105, 203–212 (1997).

Shen, X. K.

X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, “Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 48(13), 2551–2558 (2009).
[CrossRef] [PubMed]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[CrossRef]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[CrossRef]

Singha, S.

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104(11), 113520 (2008).
[CrossRef]

Stefano, C.

Strasser, H.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 685–693 (2001).
[CrossRef]

Sturm, V.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm,“Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc. 56(6), 637–649 (2001).
[CrossRef]

Sun, J.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[CrossRef]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[CrossRef]

Telle, H. H.

C. M. Davies, H. H. Telle, and A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Anal. Bioanal. Chem. 355(7-8), 895–899 (1996).
[CrossRef] [PubMed]

Theisen, M.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 839–850 (2001).
[CrossRef]

Tognoni, E.

Uebbing, J.

Vallebona, C.

Wang, H.

Waterbury, R. D.

Williams, A. W.

C. M. Davies, H. H. Telle, and A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Anal. Bioanal. Chem. 355(7-8), 895–899 (1996).
[CrossRef] [PubMed]

Wintjens, P.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[CrossRef]

Xie, Z. Q.

Yamamoto, K. Y.

Zeng, X. Y.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Zhang, B. Y.

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Zhou, Y. S.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Anal. Bioanal. Chem.

C. M. Davies, H. H. Telle, and A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Anal. Bioanal. Chem. 355(7-8), 895–899 (1996).
[CrossRef] [PubMed]

Anal. Chem.

L. M. Cabalín and J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73(6), 1120–1125 (2001).
[CrossRef]

Anal. Chim. Acta

R. E. Neuhauser, U. Panne, and R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392(1), 47–54 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[CrossRef]

Appl. Spectrosc.

J. Anal. At. Spectrom.

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
[CrossRef]

J. Appl. Phys.

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104(11), 113520 (2008).
[CrossRef]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[CrossRef]

Opt. Express

Proc. SPIE

B. J. Marquardt, B. M. Cullum, T. J. Shaw, and S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” Proc. SPIE 3105, 203–212 (1997).

Spectrochim. Acta, B At. Spectrosc.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm,“Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc. 56(6), 637–649 (2001).
[CrossRef]

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 685–693 (2001).
[CrossRef]

N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. M. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates,” Spectrochim. Acta, B At. Spectrosc. 62B(12), 1528–1536 (2007).
[CrossRef]

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 839–850 (2001).
[CrossRef]

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser-induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta, B At. Spectrosc. 62(8), 721–738 (2007).
[CrossRef]

Other

F. F. Chen, Introduction to Plasma Physics, (Plenum, New York, 1974).

L. J. Radziemski and D. A. Cremers, Laser Induced Plasma and Applications, (Marcel Dekker, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experiment setup.

Fig. 2
Fig. 2

Time-integrated spectra from Cr targets with combined walls and dual pulse (solid curve), with dual-pulse laser (short dashed curve) and with excimer laser only (short dotted curve). Excimer laser fluence: 5.6 J/cm2; Nd:YAG laser pulse energy: 360 mJ/pulse.

Fig. 3
Fig. 3

Emission intensity of Cr atomic lines (425.44 nm) as a function of time delay, using both dual-pulse and walls (square dots and solid curve), using dual-pulse (circle dots and short dashed curve) and excimer only (triangle dots and short dotted curve), at excimer laser fluence of 5.6 J/cm2, Nd:YAG laser: 360 mJ/pulse.

Fig. 4
Fig. 4

Emission intensity for Cr atomic lines (All with 425.44 nm) as a function of time delay. The distance between the walls are 11 mm, 13 mm, 15 mm, and 17 mm, at excimer laser fluence of 5.6 J/cm2, Nd:YAG laser: 360 mJ/pulse.

Fig. 5
Fig. 5

(a) Temporal evolution of DP-LIBS spectra with 50 μs interpulse delay; time-integrated LIBS spectra of plasmas from a Cr target under first-pulse only condition [3 μs after plasma generation (dashed lines)] and with reablation [2 μs after second pulse (solid lines)] at different interpulse delays of (b) 17, (c) 25, and (d) 33 μs. At excimer laser fluence of 5.6 J/cm2, Nd:YAG laser: 360 J/pulse.

Tables (1)

Tables Icon

Table 1 The enhancement factors of emission intensity for Cr atomic lines (425.44 nm) in the DP-LIBS with and without walls

Metrics