Abstract

The paper introduces a wavelength converter composed of a metallic finite 2-dimensional particle grating on top of an optical waveguide. The particles sustain plasmonic resonances which will result in the near-field enhancement and therefore, high conversion efficiency. Due to near-field interaction of the grating field with the propagating modes of the waveguide, the generated third harmonic wave is phase-matched to a propagating mode of the waveguide, while the fundamental frequency component is not coupled into the output waveguide of the structure. The performance of this structure is numerically investigated using a full-wave transmission line method for the linear analysis and a three-dimensional finite-difference time-domain method for the nonlinear analysis.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
    [CrossRef]
  2. T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett. 93(24), 243901 (2004).
    [CrossRef] [PubMed]
  3. Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010).
    [CrossRef]
  4. M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
    [CrossRef] [PubMed]
  5. T. Uthayakumar, C. P. Jisha, K. Porsezian, and V. C. Kuriakose, “Switching dynamics of a two- dimensional nonlinear directional coupler in a photopolymer,” J. Opt. 12(1), 015204 (2010).
    [CrossRef]
  6. S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [CrossRef] [PubMed]
  7. K. Dolgaleva and R. W. Boyd, “Laser gain media based on nanocomposite materials,” J. Opt. Soc. Am. B 24(10), A19–A25 (2007).
    [CrossRef]
  8. R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal- dielectric photonic bandgap structures,” Opt. Lett. 24(20), 1416–1418 (1999).
    [CrossRef] [PubMed]
  9. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [CrossRef]
  10. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [CrossRef]
  11. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett. 23(9), 700–702 (1998).
    [CrossRef] [PubMed]
  12. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13(5), 993–1005 (1996).
    [CrossRef]
  13. R. W. Day, S. S. Wang, and R. Magnusson, “Filter-response line shapes of resonant waveguide gratings,” J. Lightwave Technol. 14(8), 1815–1824 (1996).
    [CrossRef]
  14. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” J. Opt. Soc. Am. A 17(7), 1241–1249 (2000).
    [CrossRef] [PubMed]
  15. A. Selle, C. Kappel, M. A. Bader, G. Marowsky, K. Winkler, and U. Alexiev, “Picosecond-pulse-induced two-photon fluorescence enhancement in biological material by application of grating waveguide structures,” Opt. Lett. 30(13), 1683–1685 (2005).
    [CrossRef] [PubMed]
  16. S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguide structures,” Opt. Lett. 29(17), 1989–1991 (2004).
    [CrossRef] [PubMed]
  17. C. Kappel, A. Selle, M. A. Bader, and G. Marowsky, “Resonant double-grating waveguide structures as inverted Fabry-Perot interferometers,” J. Opt. Soc. Am. B 21(6), 1127–1136 (2004).
    [CrossRef]
  18. A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett. 97(22), 223704 (2010).
    [CrossRef] [PubMed]
  19. H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel Switzerland) 10(11), 9630–9646 (2010).
    [CrossRef]
  20. J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum-Well Infrared detectors using a wave-guide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264–2266 (1991).
    [CrossRef]
  21. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13(5), 993–1005 (1996).
    [CrossRef]
  22. N. Talebi and M. Shahabadi, “All-optical wavelength converter based on a heterogeneously integrated GaP on a silicon-on-insulator waveguide,” J. Opt. Soc. Am. B 27(11), 2273–2278 (2010).
    [CrossRef]
  23. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
    [CrossRef]
  24. T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
    [CrossRef] [PubMed]
  25. Y. Dumeige, F. Raineri, A. Levenson, and X. Letartre, “Second-harmonic generation in one-dimensional photonic edge waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066617 (2003).
    [CrossRef] [PubMed]
  26. B. Maes, P. Bienstman, and R. Baets, “Modeling second-harmonic generation by use of mode expansion,” J. Opt. Soc. Am. B 22(7), 1378–1383 (2005).
    [CrossRef]
  27. B. Maes, P. Bienstman, R. Baets, B. B. Hu, P. Sewell, and T. Benson, “Modeling comparison of second-harmonic generation in high-index-contrast devices,” Opt. Quantum Electron. 40(1), 13–22 (2008).
    [CrossRef]
  28. C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Nonlinear finite-difference time-domain method for the simulation of anisotropic,χ(2)χ(3) ” J. Lightwave Technol. 24(1), 624–634 (2006).
    [CrossRef]
  29. R. M. Joseph and A. Taflove, “FDTD Maxwell's equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antenn. Propag. 45(3), 364–374 (1997).
    [CrossRef]
  30. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
    [CrossRef] [PubMed]
  31. T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Technique (CRC Press, 2009) 96–97.
  32. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
    [CrossRef] [PubMed]
  33. J. B. Schneider, “Understanding the finite-difference time-domain method” (2010), retrieved December 5th, 2011, www.eecs.wsu.edu/~schneidj/ufdtd .
  34. M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEEE P Sci.Meas. Tech. 151(5), 327–334 (2004).
    [CrossRef]
  35. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  36. L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B 83(19), 195433 (2011).
    [CrossRef]
  37. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  38. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles - surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3(12), 1647–1655 (1986).
    [CrossRef]

2011 (2)

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[CrossRef] [PubMed]

L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B 83(19), 195433 (2011).
[CrossRef]

2010 (6)

N. Talebi and M. Shahabadi, “All-optical wavelength converter based on a heterogeneously integrated GaP on a silicon-on-insulator waveguide,” J. Opt. Soc. Am. B 27(11), 2273–2278 (2010).
[CrossRef]

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010).
[CrossRef]

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[CrossRef] [PubMed]

T. Uthayakumar, C. P. Jisha, K. Porsezian, and V. C. Kuriakose, “Switching dynamics of a two- dimensional nonlinear directional coupler in a photopolymer,” J. Opt. 12(1), 015204 (2010).
[CrossRef]

A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett. 97(22), 223704 (2010).
[CrossRef] [PubMed]

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel Switzerland) 10(11), 9630–9646 (2010).
[CrossRef]

2009 (2)

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[CrossRef]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

2008 (2)

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

B. Maes, P. Bienstman, R. Baets, B. B. Hu, P. Sewell, and T. Benson, “Modeling comparison of second-harmonic generation in high-index-contrast devices,” Opt. Quantum Electron. 40(1), 13–22 (2008).
[CrossRef]

2007 (1)

2006 (2)

2005 (2)

2004 (4)

C. Kappel, A. Selle, M. A. Bader, and G. Marowsky, “Resonant double-grating waveguide structures as inverted Fabry-Perot interferometers,” J. Opt. Soc. Am. B 21(6), 1127–1136 (2004).
[CrossRef]

S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguide structures,” Opt. Lett. 29(17), 1989–1991 (2004).
[CrossRef] [PubMed]

M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEEE P Sci.Meas. Tech. 151(5), 327–334 (2004).
[CrossRef]

T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett. 93(24), 243901 (2004).
[CrossRef] [PubMed]

2003 (1)

Y. Dumeige, F. Raineri, A. Levenson, and X. Letartre, “Second-harmonic generation in one-dimensional photonic edge waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066617 (2003).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

1998 (1)

1997 (2)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

R. M. Joseph and A. Taflove, “FDTD Maxwell's equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antenn. Propag. 45(3), 364–374 (1997).
[CrossRef]

1996 (3)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

1991 (1)

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum-Well Infrared detectors using a wave-guide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264–2266 (1991).
[CrossRef]

1986 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Adibi, A.

Alexiev, U.

Andersson, J. Y.

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum-Well Infrared detectors using a wave-guide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264–2266 (1991).
[CrossRef]

Atakaramians, S.

M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEEE P Sci.Meas. Tech. 151(5), 327–334 (2004).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

Bader, M. A.

Baets, R.

B. Maes, P. Bienstman, R. Baets, B. B. Hu, P. Sewell, and T. Benson, “Modeling comparison of second-harmonic generation in high-index-contrast devices,” Opt. Quantum Electron. 40(1), 13–22 (2008).
[CrossRef]

B. Maes, P. Bienstman, and R. Baets, “Modeling second-harmonic generation by use of mode expansion,” J. Opt. Soc. Am. B 22(7), 1378–1383 (2005).
[CrossRef]

Bennink, R. S.

Benson, T.

B. Maes, P. Bienstman, R. Baets, B. B. Hu, P. Sewell, and T. Benson, “Modeling comparison of second-harmonic generation in high-index-contrast devices,” Opt. Quantum Electron. 40(1), 13–22 (2008).
[CrossRef]

Bienstman, P.

B. Maes, P. Bienstman, R. Baets, B. B. Hu, P. Sewell, and T. Benson, “Modeling comparison of second-harmonic generation in high-index-contrast devices,” Opt. Quantum Electron. 40(1), 13–22 (2008).
[CrossRef]

B. Maes, P. Bienstman, and R. Baets, “Modeling second-harmonic generation by use of mode expansion,” J. Opt. Soc. Am. B 22(7), 1378–1383 (2005).
[CrossRef]

Boyd, R. W.

Brundrett, D. L.

Christ, A.

T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett. 93(24), 243901 (2004).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Daghestani, H. N.

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel Switzerland) 10(11), 9630–9646 (2010).
[CrossRef]

Day, B. W.

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel Switzerland) 10(11), 9630–9646 (2010).
[CrossRef]

Day, R. W.

R. W. Day, S. S. Wang, and R. Magnusson, “Filter-response line shapes of resonant waveguide gratings,” J. Lightwave Technol. 14(8), 1815–1824 (1996).
[CrossRef]

Dolgaleva, K.

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Dumeige, Y.

Y. Dumeige, F. Raineri, A. Levenson, and X. Letartre, “Second-harmonic generation in one-dimensional photonic edge waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066617 (2003).
[CrossRef] [PubMed]

Dunn, S. C.

Eisler, H. J.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[CrossRef] [PubMed]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[CrossRef] [PubMed]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Fang, Y.

A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett. 97(22), 223704 (2010).
[CrossRef] [PubMed]

Ferrie, A. M.

A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett. 97(22), 223704 (2010).
[CrossRef] [PubMed]

Flytzanis, C.

Friesem, A. A.

Gaylord, T. K.

Giessen, H.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[CrossRef] [PubMed]

T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett. 93(24), 243901 (2004).
[CrossRef] [PubMed]

Glytsis, E. N.

Gu, L.

L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B 83(19), 195433 (2011).
[CrossRef]

Hache, F.

Hojjat, N.

M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEEE P Sci.Meas. Tech. 151(5), 327–334 (2004).
[CrossRef]

Hu, B. B.

B. Maes, P. Bienstman, R. Baets, B. B. Hu, P. Sewell, and T. Benson, “Modeling comparison of second-harmonic generation in high-index-contrast devices,” Opt. Quantum Electron. 40(1), 13–22 (2008).
[CrossRef]

Hu, W.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010).
[CrossRef]

Hu, X. K.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010).
[CrossRef]

Ilin, K. S.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[CrossRef] [PubMed]

Jacob, D. K.

Jafarpour, A.

Jin, J. H.

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Jisha, C. P.

T. Uthayakumar, C. P. Jisha, K. Porsezian, and V. C. Kuriakose, “Switching dynamics of a two- dimensional nonlinear directional coupler in a photopolymer,” J. Opt. 12(1), 015204 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Joseph, R. M.

R. M. Joseph and A. Taflove, “FDTD Maxwell's equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antenn. Propag. 45(3), 364–374 (1997).
[CrossRef]

Kappel, C.

Katchalski, T.

Kern, K.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Khorasani, S.

Kim, S.

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, S. W.

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y. J.

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Koch, C. T.

L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B 83(19), 195433 (2011).
[CrossRef]

Kuhl, J.

T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett. 93(24), 243901 (2004).
[CrossRef] [PubMed]

Kuriakose, V. C.

T. Uthayakumar, C. P. Jisha, K. Porsezian, and V. C. Kuriakose, “Switching dynamics of a two- dimensional nonlinear directional coupler in a photopolymer,” J. Opt. 12(1), 015204 (2010).
[CrossRef]

Lamprecht, B.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[CrossRef] [PubMed]

Lederer, F.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[CrossRef] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Lee, R. K.

Leitner, A.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

Lemmer, U.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[CrossRef] [PubMed]

Letartre, X.

Y. Dumeige, F. Raineri, A. Levenson, and X. Letartre, “Second-harmonic generation in one-dimensional photonic edge waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066617 (2003).
[CrossRef] [PubMed]

Levenson, A.

Y. Dumeige, F. Raineri, A. Levenson, and X. Letartre, “Second-harmonic generation in one-dimensional photonic edge waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066617 (2003).
[CrossRef] [PubMed]

Lippitz, M.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[CrossRef] [PubMed]

Lu, Y. Q.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010).
[CrossRef]

Lundqvist, L.

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum-Well Infrared detectors using a wave-guide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264–2266 (1991).
[CrossRef]

Maes, B.

B. Maes, P. Bienstman, R. Baets, B. B. Hu, P. Sewell, and T. Benson, “Modeling comparison of second-harmonic generation in high-index-contrast devices,” Opt. Quantum Electron. 40(1), 13–22 (2008).
[CrossRef]

B. Maes, P. Bienstman, and R. Baets, “Modeling second-harmonic generation by use of mode expansion,” J. Opt. Soc. Am. B 22(7), 1378–1383 (2005).
[CrossRef]

Magnusson, R.

R. W. Day, S. S. Wang, and R. Magnusson, “Filter-response line shapes of resonant waveguide gratings,” J. Lightwave Technol. 14(8), 1815–1824 (1996).
[CrossRef]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

Mao, J.

L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B 83(19), 195433 (2011).
[CrossRef]

Marowsky, G.

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[CrossRef] [PubMed]

Moharam, M. G.

Momeni, B.

Morris, G. M.

Mu, J.

L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B 83(19), 195433 (2011).
[CrossRef]

Ogut, B.

L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B 83(19), 195433 (2011).
[CrossRef]

Oulton, R. F.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[CrossRef]

Park, I. Y.

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Paska, Z. F.

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum-Well Infrared detectors using a wave-guide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264–2266 (1991).
[CrossRef]

Paul, T.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[CrossRef] [PubMed]

Peng, S.

Pertsch, T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Porsezian, K.

T. Uthayakumar, C. P. Jisha, K. Porsezian, and V. C. Kuriakose, “Switching dynamics of a two- dimensional nonlinear directional coupler in a photopolymer,” J. Opt. 12(1), 015204 (2010).
[CrossRef]

Raineri, F.

Y. Dumeige, F. Raineri, A. Levenson, and X. Letartre, “Second-harmonic generation in one-dimensional photonic edge waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066617 (2003).
[CrossRef] [PubMed]

Reinke, C. M.

Ricard, D.

Rockstuhl, C.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[CrossRef] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Selle, A.

Sewell, P.

B. Maes, P. Bienstman, R. Baets, B. B. Hu, P. Sewell, and T. Benson, “Modeling comparison of second-harmonic generation in high-index-contrast devices,” Opt. Quantum Electron. 40(1), 13–22 (2008).
[CrossRef]

Shahabadi, M.

N. Talebi and M. Shahabadi, “All-optical wavelength converter based on a heterogeneously integrated GaP on a silicon-on-insulator waveguide,” J. Opt. Soc. Am. B 27(11), 2273–2278 (2010).
[CrossRef]

M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEEE P Sci.Meas. Tech. 151(5), 327–334 (2004).
[CrossRef]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Siegel, M.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[CrossRef] [PubMed]

Sigle, W.

L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B 83(19), 195433 (2011).
[CrossRef]

Sipe, J. E.

Soltani, M.

Soria, S.

Taflove, A.

R. M. Joseph and A. Taflove, “FDTD Maxwell's equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antenn. Propag. 45(3), 364–374 (1997).
[CrossRef]

Talebi, N.

L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B 83(19), 195433 (2011).
[CrossRef]

N. Talebi and M. Shahabadi, “All-optical wavelength converter based on a heterogeneously integrated GaP on a silicon-on-insulator waveguide,” J. Opt. Soc. Am. B 27(11), 2273–2278 (2010).
[CrossRef]

Teitelbaum, E.

Uthayakumar, T.

T. Uthayakumar, C. P. Jisha, K. Porsezian, and V. C. Kuriakose, “Switching dynamics of a two- dimensional nonlinear directional coupler in a photopolymer,” J. Opt. 12(1), 015204 (2010).
[CrossRef]

Utikal, T.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[CrossRef] [PubMed]

van Aken, P. A.

L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B 83(19), 195433 (2011).
[CrossRef]

Vogelgesang, R.

L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B 83(19), 195433 (2011).
[CrossRef]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Wang, S. S.

R. W. Day, S. S. Wang, and R. Magnusson, “Filter-response line shapes of resonant waveguide gratings,” J. Lightwave Technol. 14(8), 1815–1824 (1996).
[CrossRef]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

Weitz, R. T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Wen, X.

L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B 83(19), 195433 (2011).
[CrossRef]

Winkler, K.

Wissert, M. D.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[CrossRef] [PubMed]

Wu, Q.

A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett. 97(22), 223704 (2010).
[CrossRef] [PubMed]

Wu, Z. J.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010).
[CrossRef]

Xu, F.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010).
[CrossRef]

Xu, Y.

Yoon, Y. K.

Yu, Z. Y.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010).
[CrossRef]

Zentgraf, T.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[CrossRef] [PubMed]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[CrossRef]

T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett. 93(24), 243901 (2004).
[CrossRef] [PubMed]

Zhang, S.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[CrossRef]

Zhang, X.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[CrossRef]

Appl. Phys. B (1)

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum-Well Infrared detectors using a wave-guide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264–2266 (1991).
[CrossRef]

A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett. 97(22), 223704 (2010).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

IEEE P Sci.Meas. Tech. (1)

M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEEE P Sci.Meas. Tech. 151(5), 327–334 (2004).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

R. M. Joseph and A. Taflove, “FDTD Maxwell's equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antenn. Propag. 45(3), 364–374 (1997).
[CrossRef]

J. Chem. Phys. (1)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

J. Opt. (1)

T. Uthayakumar, C. P. Jisha, K. Porsezian, and V. C. Kuriakose, “Switching dynamics of a two- dimensional nonlinear directional coupler in a photopolymer,” J. Opt. 12(1), 015204 (2010).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (5)

Nano Lett. (2)

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[CrossRef] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Nature (1)

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

B. Maes, P. Bienstman, R. Baets, B. B. Hu, P. Sewell, and T. Benson, “Modeling comparison of second-harmonic generation in high-index-contrast devices,” Opt. Quantum Electron. 40(1), 13–22 (2008).
[CrossRef]

Phys. Rev. B (4)

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B 83(19), 195433 (2011).
[CrossRef]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[CrossRef]

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Y. Dumeige, F. Raineri, A. Levenson, and X. Letartre, “Second-harmonic generation in one-dimensional photonic edge waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066617 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[CrossRef] [PubMed]

T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett. 93(24), 243901 (2004).
[CrossRef] [PubMed]

Sensors (Basel Switzerland) (1)

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel Switzerland) 10(11), 9630–9646 (2010).
[CrossRef]

Other (3)

J. B. Schneider, “Understanding the finite-difference time-domain method” (2010), retrieved December 5th, 2011, www.eecs.wsu.edu/~schneidj/ufdtd .

T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Technique (CRC Press, 2009) 96–97.

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Realization of a wavelength converter coupler with nonlinear grating. (a) A linear grating on the top surface of a slab waveguide. Here, the frequency ω 0 is not coupled to the slab waveguide. (b) The same grating acts as a coupler at a frequency of ω 1 > ω 0 . The grating exhibits anomalies at a diffraction order, by mapping the phase-constant of the slab waveguide into the light cone. (c) A nonlinear grating which can be used as a coupler at the third-harmonic frequency without any anomaly at the fundamental frequency. D stands for Detector, P for polarizer, and S for Source.

Fig. 2
Fig. 2

(a) The configuration of the proposed wavelength converter, which is composed of a 2-dimentional grating of Au nano-rod antennas on top of a HfO2 slab waveguide. (b) Single particle and collective resonances of the near-field intensity for Au nano-particles of Fig. 2(a), with the parameters D x =40nm , D y =120nm , h=40nm , L x =140nm , and L y =240nm . The insets show the field profile for the z -component of the electric field at a specific time over the structures at a distance of only 10 nm, for both a single particle and a finite array of nano-particles.

Fig. 3
Fig. 3

Extinction spectrum versus the angle of incidence ( θ ) and free-space wavelength ( λ ) for 0θ45 and 600nmλ950nm , computed for the structure depicted in Fig. 2(a) illuminated with an s-polarized plane-wave. The color bar is in arbitrary linear units

Fig. 4
Fig. 4

(a) Extinction spectrum versus θ at λ=267nm , computed for the proposed structure of Fig. 2(a), illuminated with an s-polarized plane-wave. (b) Magnitude of the y -component of the electric field ( | E y | ) for the anomalies of the extinction spectrum at λ=267nm and for illuminating the structure with a y -polarized plane wave at angles of anomaly. The scale bars are all 150nm. The color bar is in arbitrary linear units

Fig. 5
Fig. 5

(a) Average intensity of the electric field over the grating of the nanoparticles versus the free-space wavelength, computed for the total field and the incident field. The incident optical pulse corresponds to a typical output beam of a pulsed Ti:Sapphire laser, which impinges the sample at normal incidence. Magnitude of E z ( r , ω 0 ) at the fundamental wavelength for (b) the xy -plane at 10nm above the structure, and (c) the xz -plane formed by cutting the first row of the nano-particles at 10nm from the front side. The color bars are in arbitrary linear units.

Fig. 6
Fig. 6

(a) The power spectrum of the detected signals computed using Eq. (5), for illuminating the structure at the fundamental wavelength ( λ=800nm ) and at an angle of θ= 7 from normal to the grating. For the excitation an s-polarized spatial- Gaussian optical pulse with a broadening of 1.5λ and the temporal duration of 50 fs has been used. The spatial distribution of the generated (b) E y ( r ,3 ω 0 ) (c) H y ( r ,3 ω 0 ) at λ=267nm . The color bars are in arbitrary linear units.

Fig. 7
Fig. 7

Magnitude of the x -component of the Poynting vector S x ( r ,ω ) at λ=267nm computed for different cross-sections of the structure. For the excitation, an s-polarized Gaussian optical pulse with the broadening of 1200nm and temporal duration of 50 fs at the central wavelength of 800nm has been used. The color bars are in arbitrary linear units.

Fig. 8
Fig. 8

Fundamental and third harmonic guided signals versus the angle of incidence for the configuration of Fig. 1.

Fig. 9
Fig. 9

Comparison between the intensity of the generated higher harmonics for on- and off-resonant excitations. The intensity has been computed at a distance of 10nm above the grating. For both cases, the structure has been excited with an s-polarized Gaussian optical pulse with the broadening of 1200nm and temporal duration of 50 fs, at the s-polarization.

Fig. 10
Fig. 10

Field profile for the z -component of the electric field at (a) third harmonic and (b) fundamental frequencies. The field profile is computed at a distance of 10nm below the array and inside the waveguide. The color bars are in arbitrary linear units. The structure is excited with an s-polarized Gaussian optical pulse with the broadening of 1200nm and temporal duration of 50 fs, at the central wavelength of 800nm.

Fig. 11
Fig. 11

The Power spectrum of the detected signals guided inside the waveguide and transmitted from structure. The grating is composed of 8x18 nano-rod antennas, as shown in Fig. 10. For the excitation, an optical Gaussian pulse with the broadening of 1200nm and temporal duration of 50 fs at the central wavelength of 1800nm has been used. The guided power is calculated at the location of 4μm from the end of the array.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k x ( 3 ω 0 )+ 2mπ L x =β( 3 ω 0 )
I THS ( 3 ω 0 ) | χ ( 1 ) ( 3 ω 0 )L( 3 ω 0 ) ( χ ( 1 ) ( ω 0 )L( ω 0 ) ) 3 | 2 ( I i ( ω 0 ) ) 3
P α ( r,t )= P α ( L ) ( r,t )+ ε 0 βγτ χ αβγτ ( 3 ) ( r ) E β ( r,t ) E γ ( r,t ) E τ ( r,t )
D= P ( L ) + ε 0 [ ε + χ ( 3 ) | Ε | 2 0 0 0 ε + χ ( 3 ) | Ε | 2 0 0 0 ε + χ ( 3 ) | Ε | 2 ][ E x E y E z ]
P g,t ( ω )= 1 2 Re( S WG, S T E( ω )× H ( ω )d S g,t )

Metrics