Abstract

We analyze the properties of Generalized Phase Contrast (GPC) when the input phase modulation is implemented using diffractive gratings. In GPC applications for patterned illumination, the use of a dynamic diffractive optical element for encoding the GPC input phase allows for on-the-fly optimization of the input aperture parameters according to desired output characteristics. For wavefront sensing, the achieved aperture control opens a new degree of freedom for improving the accuracy of quantitative phase imaging. Diffractive GPC input modulation also fits well with grating-based optical security applications and can be used to create phase-based information channels for enhanced information security.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg–Saxton algorithm,” New J. Phys. 7, 117–117 (2005).
    [CrossRef]
  2. T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, “Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators,” Opt. Lett. 34(1), 34–36 (2009).
    [CrossRef] [PubMed]
  3. V. Arrizón, U. Ruiz, G. Mendez, and A. Apolinar-Iribe, “Zero order synthetic hologram with a sinusoidal phase carrier for generation of multiple beams,” Opt. Express 17(4), 2663–2669 (2009).
    [CrossRef] [PubMed]
  4. J. A. Davis, J. Guertin, and D. M. Cottrell, “Diffraction-free beams generated with programmable spatial light modulators,” Appl. Opt. 32(31), 6368–6370 (1993).
    [CrossRef] [PubMed]
  5. V. Arrizón, D. Sánchez-de-la-Llave, U. Ruiz, and G. Méndez, “Efficient generation of an arbitrary nondiffracting Bessel beam employing its phase modulation,” Opt. Lett. 34(9), 1456–1458 (2009).
    [CrossRef] [PubMed]
  6. M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophoton. 3(10-11), 696–705 (2010).
    [CrossRef] [PubMed]
  7. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
    [CrossRef]
  8. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
    [CrossRef] [PubMed]
  9. J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
    [CrossRef]
  10. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  11. J. P. Kirk and A. L. Jones, “Phase-Only Complex-Valued Spatial Filter,” J. Opt. Soc. Am. 61(8), 1023–1028 (1971).
    [CrossRef]
  12. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding Amplitude Information onto Phase-Only Filters,” Appl. Opt. 38(23), 5004–5013 (1999).
    [CrossRef] [PubMed]
  13. H. Goto, T. Konishi, and K. Itoh, “Simultaneous amplitude and phase modulation by a discrete phase-only filter,” Opt. Lett. 34(5), 641–643 (2009).
    [CrossRef] [PubMed]
  14. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
    [CrossRef]
  15. G. Mínguez-Vega, V. R. Supradeepa, O. Mendoza-Yero, and A. M. Weiner, “Reconfigurable all-diffractive optical filters using phase-only spatial light modulators,” Opt. Lett. 35(14), 2406–2408 (2010).
    [CrossRef] [PubMed]
  16. J. Glückstad and D. Palima, Generalized Phase Contrast: Applications in Optics and Photonics (Springer, 2009)
  17. D. Palima and J. Glückstad, “Comparison of generalized phase contrast and computer generated holography for laser image projection,” Opt. Express 16(8), 5338–5349 (2008).
    [CrossRef] [PubMed]
  18. Y.-Y. Cheng and J. C. Wyant, “Phase shifter calibration in phase-shifting interferometry,” Appl. Opt. 24(18), 3049 (1985).
    [CrossRef] [PubMed]
  19. P. J. Rodrigo, D. Palima, and J. Glückstad, “Accurate quantitative phase imaging using generalized phase contrast,” Opt. Express 16(4), 2740–2751 (2008).
    [CrossRef] [PubMed]
  20. P. C. Mogensen and J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25(8), 566–568 (2000).
    [CrossRef] [PubMed]

2011

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[CrossRef]

2010

G. Mínguez-Vega, V. R. Supradeepa, O. Mendoza-Yero, and A. M. Weiner, “Reconfigurable all-diffractive optical filters using phase-only spatial light modulators,” Opt. Lett. 35(14), 2406–2408 (2010).
[CrossRef] [PubMed]

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophoton. 3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

2009

2008

2005

G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg–Saxton algorithm,” New J. Phys. 7, 117–117 (2005).
[CrossRef]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

2003

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2000

J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

P. C. Mogensen and J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25(8), 566–568 (2000).
[CrossRef] [PubMed]

1999

1993

1985

1971

Ando, T.

Anselmi, F.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Antkowiak, M.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophoton. 3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

Apolinar-Iribe, A.

Arrizón, V.

Bègue, A.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[CrossRef]

Campos, J.

Cheng, Y.-Y.

Cottrell, D. M.

Courtial, J.

G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg–Saxton algorithm,” New J. Phys. 7, 117–117 (2005).
[CrossRef]

Davis, J. A.

de Sars, V.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Dholakia, K.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophoton. 3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

Emiliani, V.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Fukuchi, N.

Glückstad, J.

Goto, H.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Guertin, J.

Gunn-Moore, F.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophoton. 3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

Hayasaki, Y.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

Inoue, T.

Isacoff, E. Y.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Itoh, K.

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[CrossRef]

Jones, A. L.

Kirk, J. P.

Konishi, T.

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

Matsumoto, N.

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[CrossRef]

Mendez, G.

Méndez, G.

Mendoza-Yero, O.

Mínguez-Vega, G.

Mogensen, P. C.

Moreno, I.

Nishida, N.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

Ohtake, Y.

Palima, D.

Papagiakoumou, E.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[CrossRef]

Rodrigo, P. J.

Ruiz, U.

Sánchez-de-la-Llave, D.

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

Supradeepa, V. R.

Takita, A.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

Tiziani, H.

J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

Torres-Mapa, M. L.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophoton. 3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

Weiner, A. M.

Whyte, G.

G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg–Saxton algorithm,” New J. Phys. 7, 117–117 (2005).
[CrossRef]

Wyant, J. C.

Yzuel, M. J.

Appl. Opt.

Appl. Phys. Lett.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

J Biophoton.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophoton. 3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Laser Photon. Rev.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[CrossRef]

Nat. Methods

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Nature

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

New J. Phys.

G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg–Saxton algorithm,” New J. Phys. 7, 117–117 (2005).
[CrossRef]

Opt. Commun.

J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. Glückstad and D. Palima, Generalized Phase Contrast: Applications in Optics and Photonics (Springer, 2009)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of GPC with diffractive input modulation (A) Dual modulation system where the phase object, 1, is relayed to a diffractive GPC input, 2, using lenses L1/L2 (B) Single modulation system where the GPC input plane contains both the phase object, 1, and the diffracting element, 2. In both systems, the resulting phase modulation along a diffraction order is imaged at the output plane, 4, and transformed into a high-contrast intensity pattern via interference with a common-path reference wave synthesized by the phase contrast filter, 3.

Fig. 2
Fig. 2

Intensity patterns generated using GPC with diffractive/modulated inputs. (A) The central bump indicates that the aperture size results in an out-of-phase SRW that is twice as strong as the aperture illumination on-axis. (B) The dark background circular aperture the aperture size results in an SRW that cancels the aperture illumination on-axis. (C) Circular aperture from (A) with added phase modulation; (C) Circular aperture from (A) with added phase modulation. Intensity linescans (green line) are shown above the respective images.

Fig. 3
Fig. 3

Adaptive phase imaging using diffractively modulated GPC (simulations). (A) Contrast enhancement using adaptive spatial amplitude modulation: A GPC output with poor contrast, 1, is improved, 2, by using patterned illumination, 3, which is derived by thresholding the low-contrast image; 4 shows linescans through the center of images 1 (dotted) and 2 (solid). (B) Resolving phase ambiguity using adaptive spatial phase modulation: The arrows indicate that different phase values in a phase object, 1, can have degenerate intensities at the GPC output, 2, but superposing an additional phase modulation, 3, which is derived by thresholding the degenerate image can resolve these degeneracies at the output, 4.

Fig. 4
Fig. 4

Phase cryptography using diffractively modulated GPC. (A) Removing edge effects: The undecrypted output, 1, can show the edges of the hidden letters, but these are removed, 2, by using pixilated letters, as seen in the decrypted GPC output pattern, 3. This pattern disappears, 4, when the GPC filter is removed; (B) Variable keys for an encrypted phase: the same encrypted phase, 1, may contain different hidden patterns, 2, 3, 4, that are only revealed by using the correct decryption keys. (C) Phase encryption using a hologram master: 1, White light image of a master hologram with embedded phase within its featureless circular region; 2, Image of laser diffraction from the circular region; 3, Undecrypted GPC image of diffraction from the circular region; 4, Final decrypted GPC image of the encrypted hologram master.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

p C (x,y)=a(x,y)exp[ iϕ(x,y) ],
I( x , y ) | a( x , y )exp[ iϕ( x , y ) ]+ r S ( x , y ) | 2 ,
r S ( x,y )= α ¯ [ exp( iθ )1 ] 1 { S( f x , f y ){ a( x,y ) } }.
α ¯ = a( x,y )exp[ iϕ( x,y ) ]dxdy / a( x,y )dxdy ,
p M (x,y)=a(x,y)exp[ iϕ(x,y) ]exp[ i ϕ D (x,y) ] =a(x,y)exp{ i[ ϕ(x,y)+ ϕ D (x,y) ] } ,
p M (x,y)= p C (x,y){ [ exp( 2πi f 0 x )rect( x/ 2w ) ]comb( x/X ) },
P M ( f x , f y )= P C ( f x , f y ){ 2wXsinc[ 2w( f x f 0 ) ]comb( X f x ) }.
P M ( f x , f y )= P C ( f x m/X , f y )2wXsinc( m/X f 0 ).
I( x , y ) | circ( x ' 2 + y 2 / ΔR )exp[ i ϕ 0 ]+ r S ( x , y ) | 2 .
p D (x,y)= a D (x,y)exp[ iϕ(x,y) ],

Metrics