Abstract

We present simulation and experimental results for easily fabricated spiral plasmonic antenna analogues providing circular polarization selectivity. One circular polarization state is concentrated and transmitted through a subwavelength aperture, while the opposite circular state is blocked. The spectral bandwidth, efficiency, and extinction ratios are tunable through geometric parameters. Integration of such structures onto a focal plane array in conjunction with linear micropolarizers enables complete Stokes vector imaging, that, until now, has been difficult to achieve. An array of these structures forms a plasmonic metamaterial that exhibits high circular dichroism.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-22-5453 .
    [CrossRef] [PubMed]
  2. V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18, 19292–19303 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-18-19292 .
    [CrossRef] [PubMed]
  3. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-18-19087 .
    [CrossRef] [PubMed]
  4. J. S. Tyo, B. M. Ratliff, J. K. Boger, W. T. Black, D. L. Bowers, and M. P. Fetrow, “The effects of thermal equilibrium and contrast in LWIR polarimetric images,” Opt. Express 15, 15161–15167 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-23-15161 .
    [CrossRef] [PubMed]
  5. Z. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18, 17776–17787 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-17-17776 .
    [CrossRef] [PubMed]
  6. B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Express 16, 16334–16342 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-21-16334 .
    [CrossRef] [PubMed]
  7. Y. Pang and R. Gordon, “Metal nano-grid reflective wave plate,” Opt. Express 17, 2871–2879 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2871 .
    [CrossRef] [PubMed]
  8. S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95, 013105 (2009), http://link.aip.org/link/doi/10.1063/1.3167772 .
    [CrossRef]
  9. M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D. P. Tsai, and A. A. Feyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010), http://prb.aps.org/abstract/PRB/v82/i19/e193402 .
    [CrossRef]
  10. A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102, 013517 (2007), http://jap.aip.org/resource/1/japiau/v102/i1 .
    [CrossRef]
  11. S. L. Wadsworth and G. D. Boreman, “Analysis of throughput for multilayer infrared meanderline waveplates,” Opt. Express 18, 13345–13360 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-13-13345 .
    [CrossRef] [PubMed]
  12. L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96, 041112 (2010), http://apl.aip.org/resource/1/applab/v96/i4 .
    [CrossRef]
  13. P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 153409 (2009), http://link.aps.org/doi/10.1103/PhysRevB.80.153409 .
    [CrossRef]
  14. A. Drezet, C. Genet, and T. W. Ebbesen, “Minature plasmonic wave plates,” Phys. Rev. Lett. 101, 043902 (2008), http://link.aps.org/doi/10.1103/PhysRevLett.101.043902 .
    [CrossRef] [PubMed]
  15. A. Drezet, C. Genet, J.-Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express 16, 12559–12570 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-17-12559 .
    [CrossRef] [PubMed]
  16. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009), http://www.sciencemag.org/content/325/5947/1513 ..
    [CrossRef] [PubMed]
  17. Y. Yu, Z. Yang, S. Li, and M. Zhao, “Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials,” Opt. Express 19, 10886–10894 (2011), http://dx.doi.org/10.1364/OE.19.010886 .
    [CrossRef] [PubMed]
  18. W. Chen, Z. Wu, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10, 2075–2079 (2010), http://pubs.acs.org/doi/abs/10.1021/nl100340w .
    [CrossRef] [PubMed]
  19. Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35, 1755–1757 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-11-1755 .
    [CrossRef] [PubMed]
  20. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” arXiv (2011), http://arxiv.org/abs/1108.3752v1 [cond-mat.mes-hall].
  21. B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and Co. M Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009), http://iopscience.iop.org/1464-4258/11/11/114003 .
    [CrossRef]
  22. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011), http://dx.doi.org/10.1039/C0CS00184H .
    [CrossRef] [PubMed]
  23. J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Ultra-high extinction ratio micropolarizers using plasmonic lenses,” Opt. Express 19, 18072–18079 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-19-18072 .
    [CrossRef] [PubMed]
  24. D. J. Hoppe, Impedance Boundary Conditions In Electromagnetics (CRC Press, 1995).
  25. J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 2002).
  26. P. Flammer, I. Schick, R. Collins, and R. Hollingsworth, “Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films,” Opt. Express 15, 7984–7993 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-13-7984 .
    [CrossRef] [PubMed]
  27. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Wiley, New York, 1981).
  28. J. Scott Tyo, Charles F. LaCasse, and Bradley M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34, 3187–3189 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=ol-34-20-3187 .
    [CrossRef] [PubMed]
  29. Russell C. Hardie, Daniel A. LeMaster, and Bradley M. Ratliff, “Super-resolution for imagery from integrated microgrid polarimeters,” Opt. Express 19, 12937–12960 (2011), http://www.opticsexpress.org/abstract.cfm?URI=oe-19-14-12937 .
    [CrossRef] [PubMed]

2011 (4)

2010 (8)

W. Chen, Z. Wu, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10, 2075–2079 (2010), http://pubs.acs.org/doi/abs/10.1021/nl100340w .
[CrossRef] [PubMed]

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35, 1755–1757 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-11-1755 .
[CrossRef] [PubMed]

S. L. Wadsworth and G. D. Boreman, “Analysis of throughput for multilayer infrared meanderline waveplates,” Opt. Express 18, 13345–13360 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-13-13345 .
[CrossRef] [PubMed]

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96, 041112 (2010), http://apl.aip.org/resource/1/applab/v96/i4 .
[CrossRef]

V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18, 19292–19303 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-18-19292 .
[CrossRef] [PubMed]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-18-19087 .
[CrossRef] [PubMed]

Z. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18, 17776–17787 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-17-17776 .
[CrossRef] [PubMed]

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D. P. Tsai, and A. A. Feyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010), http://prb.aps.org/abstract/PRB/v82/i19/e193402 .
[CrossRef]

2009 (6)

Y. Pang and R. Gordon, “Metal nano-grid reflective wave plate,” Opt. Express 17, 2871–2879 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2871 .
[CrossRef] [PubMed]

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95, 013105 (2009), http://link.aip.org/link/doi/10.1063/1.3167772 .
[CrossRef]

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 153409 (2009), http://link.aps.org/doi/10.1103/PhysRevB.80.153409 .
[CrossRef]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and Co. M Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009), http://iopscience.iop.org/1464-4258/11/11/114003 .
[CrossRef]

J. Scott Tyo, Charles F. LaCasse, and Bradley M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34, 3187–3189 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=ol-34-20-3187 .
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009), http://www.sciencemag.org/content/325/5947/1513 ..
[CrossRef] [PubMed]

2008 (3)

2007 (3)

2006 (1)

Abeysinghe, D. C.

W. Chen, Z. Wu, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10, 2075–2079 (2010), http://pubs.acs.org/doi/abs/10.1021/nl100340w .
[CrossRef] [PubMed]

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35, 1755–1757 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-11-1755 .
[CrossRef] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009), http://www.sciencemag.org/content/325/5947/1513 ..
[CrossRef] [PubMed]

Bermak, A.

Biagioni, P.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 153409 (2009), http://link.aps.org/doi/10.1103/PhysRevB.80.153409 .
[CrossRef]

Black, W. T.

Boger, J. K.

Boreman, G. D.

Boussaid, F.

Bowers, D. L.

Brett, M. J.

A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102, 013517 (2007), http://jap.aip.org/resource/1/japiau/v102/i1 .
[CrossRef]

Chen, W.

W. Chen, Z. Wu, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10, 2075–2079 (2010), http://pubs.acs.org/doi/abs/10.1021/nl100340w .
[CrossRef] [PubMed]

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35, 1755–1757 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-11-1755 .
[CrossRef] [PubMed]

Chenault, D. B.

Cheng, J.

A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102, 013517 (2007), http://jap.aip.org/resource/1/japiau/v102/i1 .
[CrossRef]

Chigrinov, V. G.

Collins, R.

Collins, R. T.

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009), http://www.sciencemag.org/content/325/5947/1513 ..
[CrossRef] [PubMed]

Dobynde, M. I.

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D. P. Tsai, and A. A. Feyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010), http://prb.aps.org/abstract/PRB/v82/i19/e193402 .
[CrossRef]

Dolgova, T. V.

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D. P. Tsai, and A. A. Feyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010), http://prb.aps.org/abstract/PRB/v82/i19/e193402 .
[CrossRef]

Drezet, A.

Duò, L.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 153409 (2009), http://link.aps.org/doi/10.1103/PhysRevB.80.153409 .
[CrossRef]

Ebbesen, T. W.

Engheta, N.

Fainman, Y.

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96, 041112 (2010), http://apl.aip.org/resource/1/applab/v96/i4 .
[CrossRef]

Feng, L.

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96, 041112 (2010), http://apl.aip.org/resource/1/applab/v96/i4 .
[CrossRef]

Fetrow, M. P.

Feyanin, A. A.

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D. P. Tsai, and A. A. Feyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010), http://prb.aps.org/abstract/PRB/v82/i19/e193402 .
[CrossRef]

Finazzi, M.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 153409 (2009), http://link.aps.org/doi/10.1103/PhysRevB.80.153409 .
[CrossRef]

Flammer, P.

Flammer, P. D.

Furtak, T. E.

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009), http://www.sciencemag.org/content/325/5947/1513 ..
[CrossRef] [PubMed]

Genet, C.

Goldstein, D. L.

Gordon, R.

Gruev, V.

Hardie, Russell C.

Hecht, B.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 153409 (2009), http://link.aps.org/doi/10.1103/PhysRevB.80.153409 .
[CrossRef]

Hollingsworth, R.

Hollingsworth, R. E.

Hoppe, D. J.

D. J. Hoppe, Impedance Boundary Conditions In Electromagnetics (CRC Press, 1995).

Hsu, S.-Y.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95, 013105 (2009), http://link.aip.org/link/doi/10.1063/1.3167772 .
[CrossRef]

Huang, J.-S.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 153409 (2009), http://link.aps.org/doi/10.1103/PhysRevB.80.153409 .
[CrossRef]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 2002).

Kafesaki, M.

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and Co. M Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009), http://iopscience.iop.org/1464-4258/11/11/114003 .
[CrossRef]

Koschny, T.

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and Co. M Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009), http://iopscience.iop.org/1464-4258/11/11/114003 .
[CrossRef]

Kuittinen, M.

Laakkonen, P.

LaCasse, Charles F.

Laluet, J.-Y.

Lee, K.-L.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95, 013105 (2009), http://link.aip.org/link/doi/10.1063/1.3167772 .
[CrossRef]

Lee, M.-C.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95, 013105 (2009), http://link.aip.org/link/doi/10.1063/1.3167772 .
[CrossRef]

LeMaster, Daniel A.

Li, S.

Lin, E.-H.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95, 013105 (2009), http://link.aip.org/link/doi/10.1063/1.3167772 .
[CrossRef]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009), http://www.sciencemag.org/content/325/5947/1513 ..
[CrossRef] [PubMed]

Liu, Y.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011), http://dx.doi.org/10.1039/C0CS00184H .
[CrossRef] [PubMed]

Liu, Z.

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96, 041112 (2010), http://apl.aip.org/resource/1/applab/v96/i4 .
[CrossRef]

Lomakin, V.

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96, 041112 (2010), http://apl.aip.org/resource/1/applab/v96/i4 .
[CrossRef]

Nelson, R. L.

W. Chen, Z. Wu, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10, 2075–2079 (2010), http://pubs.acs.org/doi/abs/10.1021/nl100340w .
[CrossRef] [PubMed]

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35, 1755–1757 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-11-1755 .
[CrossRef] [PubMed]

Päivänranta, B.

Pang, Y.

Passilly, N.

Peltzer, J. J.

Perkins, R.

Pietarinen, J.

Ratliff, B. M.

Ratliff, Bradley M.

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009), http://www.sciencemag.org/content/325/5947/1513 ..
[CrossRef] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009), http://www.sciencemag.org/content/325/5947/1513 ..
[CrossRef] [PubMed]

Savoini, M.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 153409 (2009), http://link.aps.org/doi/10.1103/PhysRevB.80.153409 .
[CrossRef]

Schick, I.

Scott Tyo, J.

Shaw, J. A.

Shcherbakov, M. R.

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D. P. Tsai, and A. A. Feyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010), http://prb.aps.org/abstract/PRB/v82/i19/e193402 .
[CrossRef]

Sit, J. C.

A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102, 013517 (2007), http://jap.aip.org/resource/1/japiau/v102/i1 .
[CrossRef]

Soukoulis, Co. M

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and Co. M Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009), http://iopscience.iop.org/1464-4258/11/11/114003 .
[CrossRef]

Stutzman, W. L.

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Wiley, New York, 1981).

Tervo, J.

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009), http://www.sciencemag.org/content/325/5947/1513 ..
[CrossRef] [PubMed]

Thiele, G. A.

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Wiley, New York, 1981).

Tsai, D. P.

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D. P. Tsai, and A. A. Feyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010), http://prb.aps.org/abstract/PRB/v82/i19/e193402 .
[CrossRef]

Tyo, J. S.

Van der Spiegel, J.

van Popta, A. C.

A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102, 013517 (2007), http://jap.aip.org/resource/1/japiau/v102/i1 .
[CrossRef]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009), http://www.sciencemag.org/content/325/5947/1513 ..
[CrossRef] [PubMed]

Wadsworth, S. L.

Wang, B.

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and Co. M Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009), http://iopscience.iop.org/1464-4258/11/11/114003 .
[CrossRef]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009), http://www.sciencemag.org/content/325/5947/1513 ..
[CrossRef] [PubMed]

Wei, P.-K.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95, 013105 (2009), http://link.aip.org/link/doi/10.1063/1.3167772 .
[CrossRef]

Wu, Z.

W. Chen, Z. Wu, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10, 2075–2079 (2010), http://pubs.acs.org/doi/abs/10.1021/nl100340w .
[CrossRef] [PubMed]

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35, 1755–1757 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-11-1755 .
[CrossRef] [PubMed]

Yang, Z.

York, T.

Yu, Y.

Zhan, Q.

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35, 1755–1757 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-11-1755 .
[CrossRef] [PubMed]

W. Chen, Z. Wu, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10, 2075–2079 (2010), http://pubs.acs.org/doi/abs/10.1021/nl100340w .
[CrossRef] [PubMed]

Zhang, X.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011), http://dx.doi.org/10.1039/C0CS00184H .
[CrossRef] [PubMed]

Zhao, M.

Zhao, Z.

Zhou, J.

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and Co. M Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009), http://iopscience.iop.org/1464-4258/11/11/114003 .
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95, 013105 (2009), http://link.aip.org/link/doi/10.1063/1.3167772 .
[CrossRef]

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96, 041112 (2010), http://apl.aip.org/resource/1/applab/v96/i4 .
[CrossRef]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011), http://dx.doi.org/10.1039/C0CS00184H .
[CrossRef] [PubMed]

J. Appl. Phys. (1)

A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102, 013517 (2007), http://jap.aip.org/resource/1/japiau/v102/i1 .
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and Co. M Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009), http://iopscience.iop.org/1464-4258/11/11/114003 .
[CrossRef]

Nano Lett. (1)

W. Chen, Z. Wu, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10, 2075–2079 (2010), http://pubs.acs.org/doi/abs/10.1021/nl100340w .
[CrossRef] [PubMed]

Opt. Express (12)

Y. Yu, Z. Yang, S. Li, and M. Zhao, “Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials,” Opt. Express 19, 10886–10894 (2011), http://dx.doi.org/10.1364/OE.19.010886 .
[CrossRef] [PubMed]

A. Drezet, C. Genet, J.-Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express 16, 12559–12570 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-17-12559 .
[CrossRef] [PubMed]

S. L. Wadsworth and G. D. Boreman, “Analysis of throughput for multilayer infrared meanderline waveplates,” Opt. Express 18, 13345–13360 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-13-13345 .
[CrossRef] [PubMed]

V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18, 19292–19303 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-18-19292 .
[CrossRef] [PubMed]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-18-19087 .
[CrossRef] [PubMed]

J. S. Tyo, B. M. Ratliff, J. K. Boger, W. T. Black, D. L. Bowers, and M. P. Fetrow, “The effects of thermal equilibrium and contrast in LWIR polarimetric images,” Opt. Express 15, 15161–15167 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-23-15161 .
[CrossRef] [PubMed]

Z. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18, 17776–17787 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-17-17776 .
[CrossRef] [PubMed]

B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Express 16, 16334–16342 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-21-16334 .
[CrossRef] [PubMed]

Y. Pang and R. Gordon, “Metal nano-grid reflective wave plate,” Opt. Express 17, 2871–2879 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2871 .
[CrossRef] [PubMed]

J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Ultra-high extinction ratio micropolarizers using plasmonic lenses,” Opt. Express 19, 18072–18079 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-19-18072 .
[CrossRef] [PubMed]

P. Flammer, I. Schick, R. Collins, and R. Hollingsworth, “Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films,” Opt. Express 15, 7984–7993 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-13-7984 .
[CrossRef] [PubMed]

Russell C. Hardie, Daniel A. LeMaster, and Bradley M. Ratliff, “Super-resolution for imagery from integrated microgrid polarimeters,” Opt. Express 19, 12937–12960 (2011), http://www.opticsexpress.org/abstract.cfm?URI=oe-19-14-12937 .
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (2)

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 153409 (2009), http://link.aps.org/doi/10.1103/PhysRevB.80.153409 .
[CrossRef]

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D. P. Tsai, and A. A. Feyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010), http://prb.aps.org/abstract/PRB/v82/i19/e193402 .
[CrossRef]

Phys. Rev. Lett. (1)

A. Drezet, C. Genet, and T. W. Ebbesen, “Minature plasmonic wave plates,” Phys. Rev. Lett. 101, 043902 (2008), http://link.aps.org/doi/10.1103/PhysRevLett.101.043902 .
[CrossRef] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009), http://www.sciencemag.org/content/325/5947/1513 ..
[CrossRef] [PubMed]

Other (4)

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” arXiv (2011), http://arxiv.org/abs/1108.3752v1 [cond-mat.mes-hall].

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Wiley, New York, 1981).

D. J. Hoppe, Impedance Boundary Conditions In Electromagnetics (CRC Press, 1995).

J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 2002).

Supplementary Material (2)

» Media 1: MOV (3577 KB)     
» Media 2: MOV (3792 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross-section of a model with an Archimedean spiral grating. The structure consists entirely of gold (Au) and silicon dioxide (SiO2). Unless otherwise stated, the geometric parameters for all the simulations are: the aperture bottom diameter, apDB=200nm; the aperture top diameter, ApDT=400nm; the groove height, AuGH=60nm; the gold thickness where grooves and cavity are cut out, AuH=140nm; the cap thickness, CapH=200nm; the cap diameter, CapD=688nm; the grating period, P=500nm; the cavity length to the nearest groove, CS=780nm (note that the cavity can be up to as much as one grating period longer, CL=1277nm); the deposited SiO2 thickness, SiO2H=100nm; the SiO2 groove height, SiO2GH=100nm; the SiO2 substrate height, SubH=400.0nm; and the overall diameter, Diameter=6280nm.

Fig. 2
Fig. 2

Vertical and horizontal cross-sectional time-averaged power flow (a–d) and electric field (e,f) snapshots of a 4.2π-turn model irradiated with 700nm left-circularly (a, c, e) and right-circularly (b, d, f) polarized light. For e, (click Media 1 for animation) and f, (click Media 2 for animation), the surface is the z-component of the electric field (which represents plasmons traveling parallel to the metal surface), while the arrows show the direction and magnitude of the electric field, and the colors range from dark blue for ≤−10 to dark red for ≥10 normalized to the incident electric field. For the power flow plots, colors range from dark blue for 0 to dark red for ≥50 normalized to the magnitude of the incident Poynting vector. Vertical cuts are taken through the center of the aperture, while horizontal cuts are taken 10nm above the grating ridges.

Fig. 3
Fig. 3

Simulation results. (a) Modeled geometries. Plots (b) and (c) show relative transmission normalized to the power incident on the aperture: (b) Spiral arm length study; (c) Comparison of right- and left-circular, and linear (x- and y-directions) polarization results.

Fig. 4
Fig. 4

Experimental and simulated transmission data compared. The simulations and measurements are separately normalized to the RC maximum. The inset shows an overlay of the model geometry on an SEM image of the measured structure.

Fig. 5
Fig. 5

Experimental results. (a) Structures measured in (b) and (c). Plots (b) and (c) show relative transmission as a function of free-space wavelength (nm): (b) Spiral arm length study; (c) Comparison of right- and left-circular, and linear (x- and y-directions) irradiation results.

Fig. 6
Fig. 6

(a) Array of structures to form a circular dichroic metamaterial, and (b) illustration of a full Stokes polarization superpixel.

Tables (1)

Tables Icon

Table 1 Simulation results summary

Metrics