Abstract

We report a separation of two different size particles in fluidic flow by an optical fiber. With a light of 1.55 μm launched into the fiber, particles in stationary water were massively trapped and assembled around the fiber by a negative photophoretic force. By introducing a fluidic flow, the assembled particles were separated into two different downstream positions according to their sizes by the negative photophoretic force and the dragging force acted on the particles. The intensity distribution of light leaked from the fiber and the asymmetry factor of energy distribution have been analysed as crucial factors in this separation. Poly(methyl methacrylate) particles (5-/10-μm diameter), SiO2 particles (2.08-/5.65-μm diameter), and SiO2 particles (2.08-μm diameter) mixed with yeast cells were used to demonstrate the effectiveness of the separation. The separation mechanism has also been numerical simulated and theoretical interpreted.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. C. H. Li and D. J. Harrison, “Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects,” Anal. Chem. 69(8), 1564–1568 (1997).
    [CrossRef] [PubMed]
  2. I. Inoue, Y. Wakamoto, H. Moriguchi, K. Okano, and K. Yasuda, “On-chip culture system for observation of isolated individual cells,” Lab Chip 1(1), 50–55 (2001).
    [CrossRef] [PubMed]
  3. E. A. Schilling, A. E. Kamholz, and P. Yager, “Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay,” Anal. Chem. 74(8), 1798–1804 (2002).
    [CrossRef] [PubMed]
  4. M. A. McClain, C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, and J. M. Ramsey, “Microfluidic devices for the high-throughput chemical analysis of cells,” Anal. Chem. 75(21), 5646–5655 (2003).
    [CrossRef] [PubMed]
  5. C. X. Zhang and A. Manz, “High-speed free-flow electrophoresis on chip,” Anal. Chem. 75(21), 5759–5766 (2003).
    [CrossRef] [PubMed]
  6. B. G. Hawkins, A. E. Smith, Y. A. Syed, and B. J. Kirby, “Continuous-flow particle separation by 3D Insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields,” Anal. Chem. 79(19), 7291–7300 (2007).
    [CrossRef] [PubMed]
  7. J. J. Zhu, R. C. Canter, G. Keten, P. Vedantam, T. R. J. Tzeng, and X. C. Xuan, “Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis,” Microfluid. Nanofluid. 11(6), 743–752 (2011).
    [CrossRef]
  8. C. Zhang, K. Khoshmanesh, F. J. Tovar-Lopez, A. Mitchell, W. Wlodarski, and K. Klantar-Zadeh, “Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles,” Microfluid. Nanofluid. 7(5), 633–645 (2009).
    [CrossRef]
  9. P. R. C. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
    [CrossRef] [PubMed]
  10. S. H. S. Lee, T. A. Hatton, and S. A. Khan, “Microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates,” Microfluid. Nanofluid. 11(4), 429–438 (2011).
    [CrossRef]
  11. T. T. Zhu, F. Marrero, and L. Mao, “Continuous separation of non-magnetic particles inside ferrofluids,” Microfluid. Nanofluid. 9(4-5), 1003–1009 (2010).
    [CrossRef]
  12. F. Petersson, A. Nilsson, C. Holm, H. Jönsson, and T. Laurell, “Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces,” Lab Chip 5(1), 20–22 (2005).
    [CrossRef] [PubMed]
  13. Y. Liu and K.-M. Lim, “Particle separation in microfluidics using a switching ultrasonic field,” Lab Chip 11(18), 3167–3173 (2011).
    [CrossRef] [PubMed]
  14. N. Pamme, “Continuous flow separations in microfluidic devices,” Lab Chip 7(12), 1644–1659 (2007).
    [CrossRef] [PubMed]
  15. T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
    [CrossRef]
  16. S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
    [CrossRef]
  17. S. J. Hart, A. V. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
    [CrossRef] [PubMed]
  18. H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11(13), 2241–2246 (2011).
    [CrossRef] [PubMed]
  19. H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011).
    [CrossRef] [PubMed]
  20. H. B. Xin, X. M. Li, and B. J. Li, “Massive photothermal trapping and migration of particles by a tapered optical fiber,” Opt. Express 19(18), 17065–17074 (2011).
    [CrossRef] [PubMed]
  21. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
    [CrossRef] [PubMed]
  22. C. Y. Soong, W. K. Li, C. H. Liu, and P. Y. Tzeng, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids,” Opt. Express 18(3), 2168–2182 (2010).
    [CrossRef] [PubMed]
  23. A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12(23), 5570–5575 (1996).
    [CrossRef]
  24. H. Monjushiro, M. Tanaka, and H. Watarai, “Periodic expansion-contraction motion of photoabsorbing organic droplets during laser photophoretic migration in water,” Chem. Lett. 32(3), 254–255 (2003).
    [CrossRef]
  25. Y. L. Xu, B. Å. S. Gustafson, F. Giovane, J. Blum, and S. Tehranian, “Calculation of the heat-source function in photophoresis of aggregated spheres,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(22 Pt B), 2347–2365 (1999).
    [CrossRef] [PubMed]

2011 (6)

J. J. Zhu, R. C. Canter, G. Keten, P. Vedantam, T. R. J. Tzeng, and X. C. Xuan, “Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis,” Microfluid. Nanofluid. 11(6), 743–752 (2011).
[CrossRef]

S. H. S. Lee, T. A. Hatton, and S. A. Khan, “Microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates,” Microfluid. Nanofluid. 11(4), 429–438 (2011).
[CrossRef]

Y. Liu and K.-M. Lim, “Particle separation in microfluidics using a switching ultrasonic field,” Lab Chip 11(18), 3167–3173 (2011).
[CrossRef] [PubMed]

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011).
[CrossRef] [PubMed]

H. B. Xin, X. M. Li, and B. J. Li, “Massive photothermal trapping and migration of particles by a tapered optical fiber,” Opt. Express 19(18), 17065–17074 (2011).
[CrossRef] [PubMed]

2010 (3)

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[CrossRef] [PubMed]

C. Y. Soong, W. K. Li, C. H. Liu, and P. Y. Tzeng, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids,” Opt. Express 18(3), 2168–2182 (2010).
[CrossRef] [PubMed]

T. T. Zhu, F. Marrero, and L. Mao, “Continuous separation of non-magnetic particles inside ferrofluids,” Microfluid. Nanofluid. 9(4-5), 1003–1009 (2010).
[CrossRef]

2009 (1)

C. Zhang, K. Khoshmanesh, F. J. Tovar-Lopez, A. Mitchell, W. Wlodarski, and K. Klantar-Zadeh, “Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles,” Microfluid. Nanofluid. 7(5), 633–645 (2009).
[CrossRef]

2007 (2)

B. G. Hawkins, A. E. Smith, Y. A. Syed, and B. J. Kirby, “Continuous-flow particle separation by 3D Insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields,” Anal. Chem. 79(19), 7291–7300 (2007).
[CrossRef] [PubMed]

N. Pamme, “Continuous flow separations in microfluidic devices,” Lab Chip 7(12), 1644–1659 (2007).
[CrossRef] [PubMed]

2006 (1)

S. J. Hart, A. V. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

2005 (1)

F. Petersson, A. Nilsson, C. Holm, H. Jönsson, and T. Laurell, “Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces,” Lab Chip 5(1), 20–22 (2005).
[CrossRef] [PubMed]

2003 (4)

M. A. McClain, C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, and J. M. Ramsey, “Microfluidic devices for the high-throughput chemical analysis of cells,” Anal. Chem. 75(21), 5646–5655 (2003).
[CrossRef] [PubMed]

C. X. Zhang and A. Manz, “High-speed free-flow electrophoresis on chip,” Anal. Chem. 75(21), 5759–5766 (2003).
[CrossRef] [PubMed]

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

H. Monjushiro, M. Tanaka, and H. Watarai, “Periodic expansion-contraction motion of photoabsorbing organic droplets during laser photophoretic migration in water,” Chem. Lett. 32(3), 254–255 (2003).
[CrossRef]

2002 (2)

E. A. Schilling, A. E. Kamholz, and P. Yager, “Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay,” Anal. Chem. 74(8), 1798–1804 (2002).
[CrossRef] [PubMed]

P. R. C. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
[CrossRef] [PubMed]

2001 (1)

I. Inoue, Y. Wakamoto, H. Moriguchi, K. Okano, and K. Yasuda, “On-chip culture system for observation of isolated individual cells,” Lab Chip 1(1), 50–55 (2001).
[CrossRef] [PubMed]

1999 (1)

Y. L. Xu, B. Å. S. Gustafson, F. Giovane, J. Blum, and S. Tehranian, “Calculation of the heat-source function in photophoresis of aggregated spheres,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(22 Pt B), 2347–2365 (1999).
[CrossRef] [PubMed]

1997 (1)

P. C. H. Li and D. J. Harrison, “Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects,” Anal. Chem. 69(8), 1564–1568 (1997).
[CrossRef] [PubMed]

1996 (1)

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12(23), 5570–5575 (1996).
[CrossRef]

1995 (1)

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[CrossRef]

Allbritton, N. L.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, and J. M. Ramsey, “Microfluidic devices for the high-throughput chemical analysis of cells,” Anal. Chem. 75(21), 5646–5655 (2003).
[CrossRef] [PubMed]

Arnold, J.

S. J. Hart, A. V. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

Blum, J.

Y. L. Xu, B. Å. S. Gustafson, F. Giovane, J. Blum, and S. Tehranian, “Calculation of the heat-source function in photophoresis of aggregated spheres,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(22 Pt B), 2347–2365 (1999).
[CrossRef] [PubMed]

Canter, R. C.

J. J. Zhu, R. C. Canter, G. Keten, P. Vedantam, T. R. J. Tzeng, and X. C. Xuan, “Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis,” Microfluid. Nanofluid. 11(6), 743–752 (2011).
[CrossRef]

Culbertson, C. T.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, and J. M. Ramsey, “Microfluidic devices for the high-throughput chemical analysis of cells,” Anal. Chem. 75(21), 5646–5655 (2003).
[CrossRef] [PubMed]

Desyatnikov, A. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[CrossRef] [PubMed]

Gascoyne, P. R. C.

P. R. C. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
[CrossRef] [PubMed]

Giovane, F.

Y. L. Xu, B. Å. S. Gustafson, F. Giovane, J. Blum, and S. Tehranian, “Calculation of the heat-source function in photophoresis of aggregated spheres,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(22 Pt B), 2347–2365 (1999).
[CrossRef] [PubMed]

Gustafson, B. Å. S.

Y. L. Xu, B. Å. S. Gustafson, F. Giovane, J. Blum, and S. Tehranian, “Calculation of the heat-source function in photophoresis of aggregated spheres,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(22 Pt B), 2347–2365 (1999).
[CrossRef] [PubMed]

Harrison, D. J.

P. C. H. Li and D. J. Harrison, “Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects,” Anal. Chem. 69(8), 1564–1568 (1997).
[CrossRef] [PubMed]

Hart, S. J.

S. J. Hart, A. V. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

Hatton, T. A.

S. H. S. Lee, T. A. Hatton, and S. A. Khan, “Microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates,” Microfluid. Nanofluid. 11(4), 429–438 (2011).
[CrossRef]

Hawkins, B. G.

B. G. Hawkins, A. E. Smith, Y. A. Syed, and B. J. Kirby, “Continuous-flow particle separation by 3D Insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields,” Anal. Chem. 79(19), 7291–7300 (2007).
[CrossRef] [PubMed]

Hirai, A.

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12(23), 5570–5575 (1996).
[CrossRef]

Holm, C.

F. Petersson, A. Nilsson, C. Holm, H. Jönsson, and T. Laurell, “Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces,” Lab Chip 5(1), 20–22 (2005).
[CrossRef] [PubMed]

Imasaka, T.

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[CrossRef]

Inoue, I.

I. Inoue, Y. Wakamoto, H. Moriguchi, K. Okano, and K. Yasuda, “On-chip culture system for observation of isolated individual cells,” Lab Chip 1(1), 50–55 (2001).
[CrossRef] [PubMed]

Ishidzu, Y.

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[CrossRef]

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[CrossRef] [PubMed]

Jacobson, S. C.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, and J. M. Ramsey, “Microfluidic devices for the high-throughput chemical analysis of cells,” Anal. Chem. 75(21), 5646–5655 (2003).
[CrossRef] [PubMed]

Jönsson, H.

F. Petersson, A. Nilsson, C. Holm, H. Jönsson, and T. Laurell, “Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces,” Lab Chip 5(1), 20–22 (2005).
[CrossRef] [PubMed]

Kamholz, A. E.

E. A. Schilling, A. E. Kamholz, and P. Yager, “Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay,” Anal. Chem. 74(8), 1798–1804 (2002).
[CrossRef] [PubMed]

Kaneta, T.

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[CrossRef]

Kawabata, Y.

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[CrossRef]

Keten, G.

J. J. Zhu, R. C. Canter, G. Keten, P. Vedantam, T. R. J. Tzeng, and X. C. Xuan, “Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis,” Microfluid. Nanofluid. 11(6), 743–752 (2011).
[CrossRef]

Khan, S. A.

S. H. S. Lee, T. A. Hatton, and S. A. Khan, “Microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates,” Microfluid. Nanofluid. 11(4), 429–438 (2011).
[CrossRef]

Khoshmanesh, K.

C. Zhang, K. Khoshmanesh, F. J. Tovar-Lopez, A. Mitchell, W. Wlodarski, and K. Klantar-Zadeh, “Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles,” Microfluid. Nanofluid. 7(5), 633–645 (2009).
[CrossRef]

Kirby, B. J.

B. G. Hawkins, A. E. Smith, Y. A. Syed, and B. J. Kirby, “Continuous-flow particle separation by 3D Insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields,” Anal. Chem. 79(19), 7291–7300 (2007).
[CrossRef] [PubMed]

Kivshar, Y. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[CrossRef] [PubMed]

Klantar-Zadeh, K.

C. Zhang, K. Khoshmanesh, F. J. Tovar-Lopez, A. Mitchell, W. Wlodarski, and K. Klantar-Zadeh, “Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles,” Microfluid. Nanofluid. 7(5), 633–645 (2009).
[CrossRef]

Krolikowski, W.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[CrossRef] [PubMed]

Laurell, T.

F. Petersson, A. Nilsson, C. Holm, H. Jönsson, and T. Laurell, “Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces,” Lab Chip 5(1), 20–22 (2005).
[CrossRef] [PubMed]

Lee, S. H. S.

S. H. S. Lee, T. A. Hatton, and S. A. Khan, “Microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates,” Microfluid. Nanofluid. 11(4), 429–438 (2011).
[CrossRef]

Lei, H. X.

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011).
[CrossRef] [PubMed]

Leski, T. A.

S. J. Hart, A. V. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

Li, B. J.

Li, P. C. H.

P. C. H. Li and D. J. Harrison, “Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects,” Anal. Chem. 69(8), 1564–1568 (1997).
[CrossRef] [PubMed]

Li, W. K.

Li, X. M.

Lim, K.-M.

Y. Liu and K.-M. Lim, “Particle separation in microfluidics using a switching ultrasonic field,” Lab Chip 11(18), 3167–3173 (2011).
[CrossRef] [PubMed]

Liu, C. H.

Liu, Y.

Y. Liu and K.-M. Lim, “Particle separation in microfluidics using a switching ultrasonic field,” Lab Chip 11(18), 3167–3173 (2011).
[CrossRef] [PubMed]

Manz, A.

C. X. Zhang and A. Manz, “High-speed free-flow electrophoresis on chip,” Anal. Chem. 75(21), 5759–5766 (2003).
[CrossRef] [PubMed]

Mao, L.

T. T. Zhu, F. Marrero, and L. Mao, “Continuous separation of non-magnetic particles inside ferrofluids,” Microfluid. Nanofluid. 9(4-5), 1003–1009 (2010).
[CrossRef]

Marrero, F.

T. T. Zhu, F. Marrero, and L. Mao, “Continuous separation of non-magnetic particles inside ferrofluids,” Microfluid. Nanofluid. 9(4-5), 1003–1009 (2010).
[CrossRef]

McClain, M. A.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, and J. M. Ramsey, “Microfluidic devices for the high-throughput chemical analysis of cells,” Anal. Chem. 75(21), 5646–5655 (2003).
[CrossRef] [PubMed]

Mitchell, A.

C. Zhang, K. Khoshmanesh, F. J. Tovar-Lopez, A. Mitchell, W. Wlodarski, and K. Klantar-Zadeh, “Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles,” Microfluid. Nanofluid. 7(5), 633–645 (2009).
[CrossRef]

Monjushiro, H.

H. Monjushiro, M. Tanaka, and H. Watarai, “Periodic expansion-contraction motion of photoabsorbing organic droplets during laser photophoretic migration in water,” Chem. Lett. 32(3), 254–255 (2003).
[CrossRef]

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12(23), 5570–5575 (1996).
[CrossRef]

Moriguchi, H.

I. Inoue, Y. Wakamoto, H. Moriguchi, K. Okano, and K. Yasuda, “On-chip culture system for observation of isolated individual cells,” Lab Chip 1(1), 50–55 (2001).
[CrossRef] [PubMed]

Nilsson, A.

F. Petersson, A. Nilsson, C. Holm, H. Jönsson, and T. Laurell, “Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces,” Lab Chip 5(1), 20–22 (2005).
[CrossRef] [PubMed]

Okano, K.

I. Inoue, Y. Wakamoto, H. Moriguchi, K. Okano, and K. Yasuda, “On-chip culture system for observation of isolated individual cells,” Lab Chip 1(1), 50–55 (2001).
[CrossRef] [PubMed]

Pamme, N.

N. Pamme, “Continuous flow separations in microfluidic devices,” Lab Chip 7(12), 1644–1659 (2007).
[CrossRef] [PubMed]

Petersson, F.

F. Petersson, A. Nilsson, C. Holm, H. Jönsson, and T. Laurell, “Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces,” Lab Chip 5(1), 20–22 (2005).
[CrossRef] [PubMed]

Ramsey, J. M.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, and J. M. Ramsey, “Microfluidic devices for the high-throughput chemical analysis of cells,” Anal. Chem. 75(21), 5646–5655 (2003).
[CrossRef] [PubMed]

Rode, A. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[CrossRef] [PubMed]

Schilling, E. A.

E. A. Schilling, A. E. Kamholz, and P. Yager, “Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay,” Anal. Chem. 74(8), 1798–1804 (2002).
[CrossRef] [PubMed]

Shvedov, V. G.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[CrossRef] [PubMed]

Sims, C. E.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, and J. M. Ramsey, “Microfluidic devices for the high-throughput chemical analysis of cells,” Anal. Chem. 75(21), 5646–5655 (2003).
[CrossRef] [PubMed]

Smith, A. E.

B. G. Hawkins, A. E. Smith, Y. A. Syed, and B. J. Kirby, “Continuous-flow particle separation by 3D Insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields,” Anal. Chem. 79(19), 7291–7300 (2007).
[CrossRef] [PubMed]

Soong, C. Y.

Stroud, R.

S. J. Hart, A. V. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

Syed, Y. A.

B. G. Hawkins, A. E. Smith, Y. A. Syed, and B. J. Kirby, “Continuous-flow particle separation by 3D Insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields,” Anal. Chem. 79(19), 7291–7300 (2007).
[CrossRef] [PubMed]

Tanaka, M.

H. Monjushiro, M. Tanaka, and H. Watarai, “Periodic expansion-contraction motion of photoabsorbing organic droplets during laser photophoretic migration in water,” Chem. Lett. 32(3), 254–255 (2003).
[CrossRef]

Tehranian, S.

Y. L. Xu, B. Å. S. Gustafson, F. Giovane, J. Blum, and S. Tehranian, “Calculation of the heat-source function in photophoresis of aggregated spheres,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(22 Pt B), 2347–2365 (1999).
[CrossRef] [PubMed]

Terray, A. V.

S. J. Hart, A. V. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

Tovar-Lopez, F. J.

C. Zhang, K. Khoshmanesh, F. J. Tovar-Lopez, A. Mitchell, W. Wlodarski, and K. Klantar-Zadeh, “Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles,” Microfluid. Nanofluid. 7(5), 633–645 (2009).
[CrossRef]

Tzeng, P. Y.

Tzeng, T. R. J.

J. J. Zhu, R. C. Canter, G. Keten, P. Vedantam, T. R. J. Tzeng, and X. C. Xuan, “Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis,” Microfluid. Nanofluid. 11(6), 743–752 (2011).
[CrossRef]

Vedantam, P.

J. J. Zhu, R. C. Canter, G. Keten, P. Vedantam, T. R. J. Tzeng, and X. C. Xuan, “Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis,” Microfluid. Nanofluid. 11(6), 743–752 (2011).
[CrossRef]

Vykoukal, J.

P. R. C. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
[CrossRef] [PubMed]

Wakamoto, Y.

I. Inoue, Y. Wakamoto, H. Moriguchi, K. Okano, and K. Yasuda, “On-chip culture system for observation of isolated individual cells,” Lab Chip 1(1), 50–55 (2001).
[CrossRef] [PubMed]

Watarai, H.

H. Monjushiro, M. Tanaka, and H. Watarai, “Periodic expansion-contraction motion of photoabsorbing organic droplets during laser photophoretic migration in water,” Chem. Lett. 32(3), 254–255 (2003).
[CrossRef]

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12(23), 5570–5575 (1996).
[CrossRef]

Wlodarski, W.

C. Zhang, K. Khoshmanesh, F. J. Tovar-Lopez, A. Mitchell, W. Wlodarski, and K. Klantar-Zadeh, “Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles,” Microfluid. Nanofluid. 7(5), 633–645 (2009).
[CrossRef]

Xin, H. B.

Xu, Y. L.

Y. L. Xu, B. Å. S. Gustafson, F. Giovane, J. Blum, and S. Tehranian, “Calculation of the heat-source function in photophoresis of aggregated spheres,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(22 Pt B), 2347–2365 (1999).
[CrossRef] [PubMed]

Xuan, X. C.

J. J. Zhu, R. C. Canter, G. Keten, P. Vedantam, T. R. J. Tzeng, and X. C. Xuan, “Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis,” Microfluid. Nanofluid. 11(6), 743–752 (2011).
[CrossRef]

Yager, P.

E. A. Schilling, A. E. Kamholz, and P. Yager, “Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay,” Anal. Chem. 74(8), 1798–1804 (2002).
[CrossRef] [PubMed]

Yasuda, K.

I. Inoue, Y. Wakamoto, H. Moriguchi, K. Okano, and K. Yasuda, “On-chip culture system for observation of isolated individual cells,” Lab Chip 1(1), 50–55 (2001).
[CrossRef] [PubMed]

Zhang, C.

C. Zhang, K. Khoshmanesh, F. J. Tovar-Lopez, A. Mitchell, W. Wlodarski, and K. Klantar-Zadeh, “Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles,” Microfluid. Nanofluid. 7(5), 633–645 (2009).
[CrossRef]

Zhang, C. X.

C. X. Zhang and A. Manz, “High-speed free-flow electrophoresis on chip,” Anal. Chem. 75(21), 5759–5766 (2003).
[CrossRef] [PubMed]

Zhang, Y.

H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011).
[CrossRef] [PubMed]

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

Zhu, J. J.

J. J. Zhu, R. C. Canter, G. Keten, P. Vedantam, T. R. J. Tzeng, and X. C. Xuan, “Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis,” Microfluid. Nanofluid. 11(6), 743–752 (2011).
[CrossRef]

Zhu, T. T.

T. T. Zhu, F. Marrero, and L. Mao, “Continuous separation of non-magnetic particles inside ferrofluids,” Microfluid. Nanofluid. 9(4-5), 1003–1009 (2010).
[CrossRef]

Anal. Chem. (7)

E. A. Schilling, A. E. Kamholz, and P. Yager, “Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay,” Anal. Chem. 74(8), 1798–1804 (2002).
[CrossRef] [PubMed]

M. A. McClain, C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, and J. M. Ramsey, “Microfluidic devices for the high-throughput chemical analysis of cells,” Anal. Chem. 75(21), 5646–5655 (2003).
[CrossRef] [PubMed]

C. X. Zhang and A. Manz, “High-speed free-flow electrophoresis on chip,” Anal. Chem. 75(21), 5759–5766 (2003).
[CrossRef] [PubMed]

B. G. Hawkins, A. E. Smith, Y. A. Syed, and B. J. Kirby, “Continuous-flow particle separation by 3D Insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields,” Anal. Chem. 79(19), 7291–7300 (2007).
[CrossRef] [PubMed]

P. C. H. Li and D. J. Harrison, “Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects,” Anal. Chem. 69(8), 1564–1568 (1997).
[CrossRef] [PubMed]

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[CrossRef]

S. J. Hart, A. V. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

Chem. Lett. (1)

H. Monjushiro, M. Tanaka, and H. Watarai, “Periodic expansion-contraction motion of photoabsorbing organic droplets during laser photophoretic migration in water,” Chem. Lett. 32(3), 254–255 (2003).
[CrossRef]

Electrophoresis (1)

P. R. C. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
[CrossRef] [PubMed]

Lab Chip (5)

I. Inoue, Y. Wakamoto, H. Moriguchi, K. Okano, and K. Yasuda, “On-chip culture system for observation of isolated individual cells,” Lab Chip 1(1), 50–55 (2001).
[CrossRef] [PubMed]

F. Petersson, A. Nilsson, C. Holm, H. Jönsson, and T. Laurell, “Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces,” Lab Chip 5(1), 20–22 (2005).
[CrossRef] [PubMed]

Y. Liu and K.-M. Lim, “Particle separation in microfluidics using a switching ultrasonic field,” Lab Chip 11(18), 3167–3173 (2011).
[CrossRef] [PubMed]

N. Pamme, “Continuous flow separations in microfluidic devices,” Lab Chip 7(12), 1644–1659 (2007).
[CrossRef] [PubMed]

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

Langmuir (1)

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12(23), 5570–5575 (1996).
[CrossRef]

Microfluid. Nanofluid. (4)

S. H. S. Lee, T. A. Hatton, and S. A. Khan, “Microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates,” Microfluid. Nanofluid. 11(4), 429–438 (2011).
[CrossRef]

T. T. Zhu, F. Marrero, and L. Mao, “Continuous separation of non-magnetic particles inside ferrofluids,” Microfluid. Nanofluid. 9(4-5), 1003–1009 (2010).
[CrossRef]

J. J. Zhu, R. C. Canter, G. Keten, P. Vedantam, T. R. J. Tzeng, and X. C. Xuan, “Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis,” Microfluid. Nanofluid. 11(6), 743–752 (2011).
[CrossRef]

C. Zhang, K. Khoshmanesh, F. J. Tovar-Lopez, A. Mitchell, W. Wlodarski, and K. Klantar-Zadeh, “Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles,” Microfluid. Nanofluid. 7(5), 633–645 (2009).
[CrossRef]

Opt. Express (3)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

Y. L. Xu, B. Å. S. Gustafson, F. Giovane, J. Blum, and S. Tehranian, “Calculation of the heat-source function in photophoresis of aggregated spheres,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(22 Pt B), 2347–2365 (1999).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MOV (3055 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic for particle separation in fluidic flow by an optical fiber. The inset shows the scanning electron microscope image of a 1.2-μm optical fiber. (b–d) Optical microscope images of particle mixtures with (b) 5-/10-μm-diameter PMMA particles, (c) 2.08-/5.65-μm-diameter SiO2 particles, and (d) 2.08-μm-diameter SiO2 particles and yeast cells.

Fig. 2
Fig. 2

Optical microscope images of PMMA particles (5-/10-μm diameter) in water. (a) Without light launched into the fiber (1.2 μm in diameter), the two particles randomly dispersed in the fluidic flow of vf = 4.5 μm/s. (b) With a 1.55-μm light launched into the fiber with power P = 120 mW, the two particles were trapped and separated in the fluidic flow of vf = 4.5 μm/s. (c) Remain the optical power P = 120 mW while the velocity of the fluidic flow is increased to vf = 8.0 μm/s, the separation of the trapped particles become more obviously. (d) With a 1.55-μm light launched into the fiber with P = 120 mW, the two particles were trapped at around the fiber in stationary water. Detailed separation process is shown in Media 1 (from vf = 4.5 to 8 μm/s).

Fig. 3
Fig. 3

The measured retention distance d and standard deviation σ for the 5-/10-μm-diameter PMMA particle to the fiber versus the flow velocity vf.

Fig. 4
Fig. 4

Physical model of a PMMA particle radiated by the light of 1.55 µm.

Fig. 5
Fig. 5

Simulated electric field amplitude distribution (normalized) within PMMA particles with (a) 1-µm diameter, (b) 2.5-µm diameter, (c) 5-µm diameter, (d) 7.5-µm diameter, (e) 10-µm diameter, and (f) 12.5-µm diameter.

Fig. 6
Fig. 6

The calculated asymmetry factor J of energy distribution versus diameter of PMMA particle.

Fig. 7
Fig. 7

Theoretical and experimental data of retention distance of the 5-/10-μm-diameter PMMA particle to the fiber versus the flow velocity (vf).

Fig. 8
Fig. 8

Schematic illustrations of the impact of the flow velocity on the 5-/10-μm-diameter PMMA particle separation by an optical fiber at 1.55-µm wavelength. (a) At an flow velocity vf. (b) At an flow velocity vf′ (vf′>vf).

Fig. 9
Fig. 9

Separations of other particles and microbes. (a,b) Optical microscope images for the separation of SiO2 particles (2.08-/5.65-μm diameter) using a 4.2-μm diameter fiber at different flow velocity vf. (c,d) Optical microscope images for the separation of SiO2 particles (2.08-μm-diameter) and yeast cells using a 5.8-μm-diameter fiber at different flow velocity vf.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F ph = ln3π β T A r 0 2 R 3 V 0 (2 k f + k p ) IJ,
J= R n p κ p n f 2 λ 0 1 0 π | E(ζ,θ) | 2 | E 0 | 2 ζ 3 cosθsinθdθdζ,
F ph = F d =6πμR v f .
d= 1 α ln[ 18μ V 0 (2 k f + k p ) v f ln3 β T A r 0 2 J I 0 ],

Metrics