Abstract

Light-emitting diodes are common light sources in modern lighting. The optical distribution of an LED package and the bidirectional scattering distribution function (BSDF) of diffusing optical components are important factors in lighting design. This paper proposes an innovative method of measuring both the optical distribution of LEDs and BSDF quickly. The proposed method uses a 2-D screen and a camera to capture the illumination on a screen, and acquires the whole-field optical distribution by synthesizing the images on the screen in different angles. This paper presents theoretical calculations and experimental results demonstrating the construction of the BSDF.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Feng, Y. Luo, and Y. Han, “Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,” Opt. Express 18(21), 22020–22031 (2010).
    [CrossRef] [PubMed]
  2. F. Chen, K. Wang, Z. Qin, D. Wu, X. Luo, and S. Liu, “Design method of high-efficient LED headlamp lens,” Opt. Express 18, 20960–20983 (2010).
    [PubMed]
  3. S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express 19(S4Suppl 4), A716–A724 (2011).
    [CrossRef] [PubMed]
  4. Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
    [CrossRef]
  5. C. H. Tsuei, J. W. Pen, and W. S. Sun, “Simulating the illuminance and the efficiency of the LED and fluorescent lights used in indoor lighting design,” Opt. Express 16(23), 18692–18701 (2008).
    [CrossRef] [PubMed]
  6. M. A. Greiner, B. D. Duncan, and M. P. Dierking, “Bidirectional scattering distribution functions of maple and cottonwood leaves,” Appl. Opt. 46(25), 6485–6494 (2007).
    [CrossRef] [PubMed]
  7. J. F. Murray-Coleman and A. M. Smith, “The automated measurement of BRDFs and their application to luminaire modelling,” J. Illum. Eng. Soc. (1990).
  8. W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15(12), 7572–7577 (2007).
    [CrossRef] [PubMed]
  9. I. Moreno and C. C. Sun, “Modeling the radiation pattern of LEDs,” Opt. Express 16(3), 1808–1819 (2008).
    [CrossRef] [PubMed]
  10. J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, “Electroluminesence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations,” J. Appl. Phys. 88(2), 1073–1081 (2000).
    [CrossRef]
  11. S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31(20), 3016–3018 (2006).
    [CrossRef] [PubMed]
  12. T. F. Schiff, J. C. Stover, D. J. Wilson, B. D. Swimley, M. E. Southwood, and D. R. Bjork, “Design review of a unique outof- plane polarmetric scatterometer,” in Stray Radiation in Optical Systems II, R. P. Breault, ed., Proc. SPIE 1753, 262–268 (1992).
  13. M. T. Beecroft, J. T. Neu, and J. Jafolla, “Bidirectional reflectance data to support paint development and signature calculations,” in Stray Radiation in Optical Systems II, R. P. Breault, ed., Proc. SPIE 1753, 304–316 (1992).
  14. D. R. White, P. Saunders, S. J. Bonsey, J. van de Ven, and H. Edgar, “Reflectometer for measuring the bidirectional reflectance of rough surfaces,” Appl. Opt. 37(16), 3450–3454 (1998).
    [CrossRef] [PubMed]
  15. T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,” Rev. Sci. Instrum. 70(9), 3688–3695 (1999).
    [CrossRef]
  16. J. C. Martínez-Antón and E. Bernabeu, “Automatic three-dimensional spectrogoniometer for determination of optical properties and surface parameters,” Appl. Opt. 33(25), 6059–6061 (1994).
    [CrossRef] [PubMed]
  17. K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
    [CrossRef]
  18. G. J. Ward, “Measuring and modeling anisotropic reflection,” Comput. Graph. 26(2), 265–272 (1992).
    [CrossRef]
  19. H. Kostal, D. Kreysar, and R. Rykowski, “Application of Imaging Sphere for BSDF Measurements of Arbitrary Materials,” OSA Frontiers in Optics Conference, paper FMJ6 (2008).
  20. Z. E. M. A. X. Radiant, LLC, “Imaging Sphere for Luminous Intensity measurement” (Radiant ZEMAX, LLC, 2011). http://www.radiantimaging.com/index.php?q=system/files/products/specifications/%5BProduct_Sheet%5D_IS-LI_Imaging_Sphere_110328.pdf
  21. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31(14), 2193–2195 (2006).
    [CrossRef] [PubMed]
  22. C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17(16), 13918–13927 (2009).
    [CrossRef] [PubMed]
  23. J. C. Stover, Optical scattering measurement and analysis (Mc Graw-Hill, 1990).
  24. V. N. Mahajan, Optical imaging and aberrations (SPIE PRESS, 1998).

2011 (2)

S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express 19(S4Suppl 4), A716–A724 (2011).
[CrossRef] [PubMed]

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
[CrossRef]

2010 (2)

2009 (1)

2008 (2)

2007 (2)

2006 (2)

2000 (1)

J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, “Electroluminesence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations,” J. Appl. Phys. 88(2), 1073–1081 (2000).
[CrossRef]

1999 (2)

T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,” Rev. Sci. Instrum. 70(9), 3688–3695 (1999).
[CrossRef]

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
[CrossRef]

1998 (1)

1994 (1)

1992 (1)

G. J. Ward, “Measuring and modeling anisotropic reflection,” Comput. Graph. 26(2), 265–272 (1992).
[CrossRef]

Asmail, C. C.

T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,” Rev. Sci. Instrum. 70(9), 3688–3695 (1999).
[CrossRef]

Bernabeu, E.

Bonsey, S. J.

Chang, S. I.

Chen, F.

Chien, W. T.

Dana, K. J.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
[CrossRef]

Dierking, M. P.

Duncan, B. D.

Edgar, H.

Feng, Z.

Friend, R. H.

J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, “Electroluminesence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations,” J. Appl. Phys. 88(2), 1073–1081 (2000).
[CrossRef]

Germer, T. A.

T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,” Rev. Sci. Instrum. 70(9), 3688–3695 (1999).
[CrossRef]

Greenham, N. C.

J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, “Electroluminesence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations,” J. Appl. Phys. 88(2), 1073–1081 (2000).
[CrossRef]

Greiner, M. A.

Han, Y.

Ho, P. K. H.

J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, “Electroluminesence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations,” J. Appl. Phys. 88(2), 1073–1081 (2000).
[CrossRef]

Hsieh, C. C.

Huang, S. M.

Jia, G. X.

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
[CrossRef]

Kim, H.

Kim, J. J.

Kim, J. S.

J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, “Electroluminesence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations,” J. Appl. Phys. 88(2), 1073–1081 (2000).
[CrossRef]

Koenderink, J. J.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
[CrossRef]

Lee, B. K.

Lee, T. X.

Lee, Y. L.

Liu, S.

Lo, Y. C.

Luo, X.

Luo, Y.

Ma, S. H.

Martínez-Antón, J. C.

Moreno, I.

Nayar, S. K.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
[CrossRef]

Ouyang, J. F.

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
[CrossRef]

Pen, J. W.

Qin, Z.

Qu, X. H.

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
[CrossRef]

Saunders, P.

Shin, D. H.

Sun, C. C.

Sun, W. S.

Tsuei, C. H.

van de Ven, J.

van Ginneken, B.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
[CrossRef]

Wang, K.

Wang, S.

Ward, G. J.

G. J. Ward, “Measuring and modeling anisotropic reflection,” Comput. Graph. 26(2), 265–272 (1992).
[CrossRef]

White, D. R.

Wu, D.

Yoon, J. B.

Zhu, Z. M.

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
[CrossRef]

ACM Trans. Graph. (1)

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
[CrossRef]

Appl. Opt. (3)

Comput. Graph. (1)

G. J. Ward, “Measuring and modeling anisotropic reflection,” Comput. Graph. 26(2), 265–272 (1992).
[CrossRef]

J. Appl. Phys. (1)

J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, “Electroluminesence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations,” J. Appl. Phys. 88(2), 1073–1081 (2000).
[CrossRef]

J. Disp. Technol. (1)

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
[CrossRef]

Opt. Express (7)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,” Rev. Sci. Instrum. 70(9), 3688–3695 (1999).
[CrossRef]

Other (7)

J. C. Stover, Optical scattering measurement and analysis (Mc Graw-Hill, 1990).

V. N. Mahajan, Optical imaging and aberrations (SPIE PRESS, 1998).

T. F. Schiff, J. C. Stover, D. J. Wilson, B. D. Swimley, M. E. Southwood, and D. R. Bjork, “Design review of a unique outof- plane polarmetric scatterometer,” in Stray Radiation in Optical Systems II, R. P. Breault, ed., Proc. SPIE 1753, 262–268 (1992).

M. T. Beecroft, J. T. Neu, and J. Jafolla, “Bidirectional reflectance data to support paint development and signature calculations,” in Stray Radiation in Optical Systems II, R. P. Breault, ed., Proc. SPIE 1753, 304–316 (1992).

H. Kostal, D. Kreysar, and R. Rykowski, “Application of Imaging Sphere for BSDF Measurements of Arbitrary Materials,” OSA Frontiers in Optics Conference, paper FMJ6 (2008).

Z. E. M. A. X. Radiant, LLC, “Imaging Sphere for Luminous Intensity measurement” (Radiant ZEMAX, LLC, 2011). http://www.radiantimaging.com/index.php?q=system/files/products/specifications/%5BProduct_Sheet%5D_IS-LI_Imaging_Sphere_110328.pdf

J. F. Murray-Coleman and A. M. Smith, “The automated measurement of BRDFs and their application to luminaire modelling,” J. Illum. Eng. Soc. (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Photometric and geometric quantities in the polar coordinate system.

Fig. 2
Fig. 2

The equivalent scheme of the imaging setup: (a) The top view of the architecture; (b) The screens put in nine directions to cover broad angle.

Fig. 3
Fig. 3

The setup of the SIS system.

Fig. 4
Fig. 4

Side view of the setup when M3 is used as the directional mirror.

Fig. 6
Fig. 6

Side view of the setup when M5 is used as the directional mirror.

Fig. 5
Fig. 5

Side view of the setup when M4 is used as the directional mirror.

Fig. 7
Fig. 7

Top view for diffuser rotating along ϕx’ (a) −45°, (b) 0°, and (c) 45°, respectively.

Fig. 8
Fig. 8

The geometry of the measurement setup.

Fig. 9
Fig. 9

The geometry of coordinate transformation.

Fig. 10
Fig. 10

Pictures taken by camera for ϕ x equaling to 0°, and ϕ y equaling to (a)-45°, (b)0°, and (c) 45°.

Fig. 11
Fig. 11

CCBTDF of sample A before coordinate transform.

Fig. 12
Fig. 12

CCBTDF of sample A by SIS system.

Fig. 13
Fig. 13

CCBTDF of sample A by SIS system.

Fig. 14
Fig. 14

CCBTDF of sample A by SIS system.

Fig. 15
Fig. 15

CCBTDF of sample A by the SIS system for different incident angle: (a) θi = 0°; (b) θi = 10°; (c) θi = 20°; (d) θi = 30°; (e) θi = 40°; (f) θi = 50°; (g) θi = 60°; (h) θi = 70°.

Fig. 16
Fig. 16

1-D Comparison of sample A between measurement by uni-planar goniometer and the SIS system: (a) θi = 0°; (b) θi = 10°; (c) θi = 20°; (d) θi = 30°; (e) θi = 40°; (f) θi = 50°; (g) θi = 60°; (h) θi = 70°.

Fig. 17
Fig. 17

The setup used to simulate looking into the lamp through the covering diffusing media.

Fig. 18
Fig. 18

Three diffuser samples for (a) Sample A, (b) Sample B, and (c) Sample C.

Fig. 19
Fig. 19

The simulation results of ASAP based on the SIS system for (a) Sample A, (b) Sample B, and (c) Sample C.

Fig. 20
Fig. 20

The experimental results for (a) Sample A, (b) Sample B, and (c) Sample C.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

BSDF( θ i , ϕ i , θ s , ϕ s )= d L s ( θ s , ϕ s ) d E i ( θ i , ϕ i ) ,
CCBSDF=cos θ s BSDF.
θ z = tan 1 ( x 2 + y 2 d 1 ),
θ c = tan 1 ( x 2 + y 2 d 2 ).
E s ( x , y ) cos 3 θ z CCBSDF( x , y ).
E c ( x , y ) cos 4 θ c E s ( x , y ),
CCBSDF( x , y ) E c ( x , y ) cos 4 θ c cos 3 θ z ,
[ x y z ]=[ cos ϕ y sin ϕ x sin ϕ y cos ϕ x sin ϕ y 0 cos ϕ x sin ϕ x sin ϕ y sin ϕ x cos ϕ y cos ϕ x cos ϕ y ][ x y z ].
r= x 2 + y 2 + z 2 ,
θ x = cos 1 ( x r ),
θ y = cos 1 ( y r ),
θ s = cos 1 ( z r ),
ϕ s = tan 1 ( y x ).
E c Clog( 255 255G ),

Metrics