Abstract

A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub-THz signals. The analysis of the synthesized sub-THz signals up to 120 GHz gives as a result an effective reduction of the electrical linewidth when compared to direct harmonic generation that begins at 50 GHz and becomes greater as the frequency increases. The phase noise reduction offered by the setup, along with its integration potential, cost and bandwidth, make it a promising candidate to the development of an integrated and high performance low phase noise local oscillator in the sub-THz range.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
    [CrossRef]
  2. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
    [CrossRef] [PubMed]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  4. S. Ristic, A. Bhardwaj, M. Rodwell, L. Coldren, and L. Johansson, “An Optical Phase-Locked Loop Photonic Integrated Circuit,” J. Lightwave Technol. 28, 526–538 (2009).
  5. X. Leijtens, “JePPIX: the platform for Indium Phosphide-based photonics,” IET Optoelectron. 5(5), 202–206 (2011).
    [CrossRef]
  6. H.-J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, and T. Nagatsuma, “Broadband-Frequency-Tunable Sub-Terahertz Wave Generation Using an Optical Comb, AWGs, Optical Switches, and a Uni-Traveling Carrier Photodiode for Spectroscopic Applications,” J. Lightwave Technol. 26(15), 2521–2530 (2008).
    [CrossRef]
  7. H. Ito, T. Furuta, F. Nakajima, K. Yoshino, and T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. Lightwave Technol. 23(12), 4016–4021 (2005).
    [CrossRef]
  8. P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
    [CrossRef]
  9. P. Acedo, G. Carpintero, A. R. Criado, and K. Yvind, “Photonic Synthesis of sub-THz Signals Using Mode-Locked Single QW Lasers and Tunable Fabry-Perot Fiber Filters,” in European Microwave Week EuMIC11-4, Paris, France (2011).
  10. P. Vasil’ev, Ultrafast Diode Lasers: Fundamentals and Applications (Artech House Publishers, 1995).
  11. K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance 10 GHz all-active monolithic modelocked semiconductor lasers,” Electron. Lett. 40(12), 735–737 (2004).
    [CrossRef]
  12. G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low Noise Performance of Passively Mode-Locked 10-GHz Quantum-Dot Laser Diode,” IEEE Photon. Technol. Lett. 21(6), 389–391 (2009).
    [CrossRef]
  13. D. Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
    [CrossRef]
  14. D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B 14(1), 167–174 (1997).
    [CrossRef]
  15. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave Uni-Traveling Carrier photodiodes for continuous wave THz generation,” Opt. Express 18(11), 11105–11110 (2010).
    [CrossRef] [PubMed]
  16. E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-Locking Properties of InAs/InP-Based Mode-Locked Quantum-Dash Lasers at 21 GHz,” IEEE Photon. Technol. Lett. 23(20), 1544–1546 (2011).
    [CrossRef]
  17. S. Gee, F. Quinlan, S. Ozharar, and P. Delfyett, “Two-mode beat phase noise of actively modelocked lasers,” Opt. Express 13(11), 3977–3982 (2005).
    [CrossRef] [PubMed]

2011 (2)

X. Leijtens, “JePPIX: the platform for Indium Phosphide-based photonics,” IET Optoelectron. 5(5), 202–206 (2011).
[CrossRef]

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-Locking Properties of InAs/InP-Based Mode-Locked Quantum-Dash Lasers at 21 GHz,” IEEE Photon. Technol. Lett. 23(20), 1544–1546 (2011).
[CrossRef]

2010 (2)

2009 (2)

S. Ristic, A. Bhardwaj, M. Rodwell, L. Coldren, and L. Johansson, “An Optical Phase-Locked Loop Photonic Integrated Circuit,” J. Lightwave Technol. 28, 526–538 (2009).

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low Noise Performance of Passively Mode-Locked 10-GHz Quantum-Dot Laser Diode,” IEEE Photon. Technol. Lett. 21(6), 389–391 (2009).
[CrossRef]

2008 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

2006 (1)

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

2005 (2)

2004 (1)

K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance 10 GHz all-active monolithic modelocked semiconductor lasers,” Electron. Lett. 40(12), 735–737 (2004).
[CrossRef]

2002 (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

1997 (1)

1986 (1)

D. Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Acedo, P.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

Bhardwaj, A.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Carpintero, G.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low Noise Performance of Passively Mode-Locked 10-GHz Quantum-Dot Laser Diode,” IEEE Photon. Technol. Lett. 21(6), 389–391 (2009).
[CrossRef]

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

Christiansen, L. J.

K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance 10 GHz all-active monolithic modelocked semiconductor lasers,” Electron. Lett. 40(12), 735–737 (2004).
[CrossRef]

Coldren, L.

Delfyett, P.

Dumitrescu, M.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

Eliyahu, D.

Furuta, T.

Garidel, S.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

Gee, S.

Hanberg, J.

K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance 10 GHz all-active monolithic modelocked semiconductor lasers,” Electron. Lett. 40(12), 735–737 (2004).
[CrossRef]

Hansmann, S.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

Hegarty, S. P.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-Locking Properties of InAs/InP-Based Mode-Locked Quantum-Dash Lasers at 21 GHz,” IEEE Photon. Technol. Lett. 23(20), 1544–1546 (2011).
[CrossRef]

Hochrein, T.

Huyet, G.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-Locking Properties of InAs/InP-Based Mode-Locked Quantum-Dash Lasers at 21 GHz,” IEEE Photon. Technol. Lett. 23(20), 1544–1546 (2011).
[CrossRef]

Hvam, J. M.

K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance 10 GHz all-active monolithic modelocked semiconductor lasers,” Electron. Lett. 40(12), 735–737 (2004).
[CrossRef]

Ishibashi, T.

Ito, H.

Jansen, C.

Johansson, L.

Jördens, C.

Koch, M.

Krumbholz, N.

Lamela, H.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

Larsson, D.

K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance 10 GHz all-active monolithic modelocked semiconductor lasers,” Electron. Lett. 40(12), 735–737 (2004).
[CrossRef]

Leijtens, X.

X. Leijtens, “JePPIX: the platform for Indium Phosphide-based photonics,” IET Optoelectron. 5(5), 202–206 (2011).
[CrossRef]

Lelarge, F.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-Locking Properties of InAs/InP-Based Mode-Locked Quantum-Dash Lasers at 21 GHz,” IEEE Photon. Technol. Lett. 23(20), 1544–1546 (2011).
[CrossRef]

Li, W.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

Linde, D.

D. Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Martinez, A.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-Locking Properties of InAs/InP-Based Mode-Locked Quantum-Dash Lasers at 21 GHz,” IEEE Photon. Technol. Lett. 23(20), 1544–1546 (2011).
[CrossRef]

McInerney, J. G.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-Locking Properties of InAs/InP-Based Mode-Locked Quantum-Dash Lasers at 21 GHz,” IEEE Photon. Technol. Lett. 23(20), 1544–1546 (2011).
[CrossRef]

Merghem, K.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-Locking Properties of InAs/InP-Based Mode-Locked Quantum-Dash Lasers at 21 GHz,” IEEE Photon. Technol. Lett. 23(20), 1544–1546 (2011).
[CrossRef]

Moodie, D. G.

Mork, J.

K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance 10 GHz all-active monolithic modelocked semiconductor lasers,” Electron. Lett. 40(12), 735–737 (2004).
[CrossRef]

Nagatsuma, T.

Nakajima, F.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Ozharar, S.

Penty, R. V.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low Noise Performance of Passively Mode-Locked 10-GHz Quantum-Dot Laser Diode,” IEEE Photon. Technol. Lett. 21(6), 389–391 (2009).
[CrossRef]

Pessa, M.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

Peters, O.

Quinlan, F.

Ramdane, A.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-Locking Properties of InAs/InP-Based Mode-Locked Quantum-Dash Lasers at 21 GHz,” IEEE Photon. Technol. Lett. 23(20), 1544–1546 (2011).
[CrossRef]

Renaud, C. C.

Ristic, S.

Robertson, M. J.

Roda, C.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

Rodwell, M.

Rosales, R.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-Locking Properties of InAs/InP-Based Mode-Locked Quantum-Dash Lasers at 21 GHz,” IEEE Photon. Technol. Lett. 23(20), 1544–1546 (2011).
[CrossRef]

Rouvalis, E.

Salhi, M.

Salvatore, R. A.

Scheller, M.

Seeds, A. J.

Shimizu, N.

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

Song, H.-J.

Sooudi, E.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-Locking Properties of InAs/InP-Based Mode-Locked Quantum-Dash Lasers at 21 GHz,” IEEE Photon. Technol. Lett. 23(20), 1544–1546 (2011).
[CrossRef]

Suizu, K.

Thompson, M.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

Thompson, M. G.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low Noise Performance of Passively Mode-Locked 10-GHz Quantum-Dot Laser Diode,” IEEE Photon. Technol. Lett. 21(6), 389–391 (2009).
[CrossRef]

Vieweg, N.

Vilcot, J. P.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

White, I. H.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low Noise Performance of Passively Mode-Locked 10-GHz Quantum-Dot Laser Diode,” IEEE Photon. Technol. Lett. 21(6), 389–391 (2009).
[CrossRef]

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

Wietzke, S.

Williams, K. A.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

Yariv, A.

Yoshino, K.

Yvind, K.

K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance 10 GHz all-active monolithic modelocked semiconductor lasers,” Electron. Lett. 40(12), 735–737 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Electron. Lett. (2)

K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance 10 GHz all-active monolithic modelocked semiconductor lasers,” Electron. Lett. 40(12), 735–737 (2004).
[CrossRef]

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low Noise Performance of Passively Mode-Locked 10-GHz Quantum-Dot Laser Diode,” IEEE Photon. Technol. Lett. 21(6), 389–391 (2009).
[CrossRef]

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-Locking Properties of InAs/InP-Based Mode-Locked Quantum-Dash Lasers at 21 GHz,” IEEE Photon. Technol. Lett. 23(20), 1544–1546 (2011).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

IET Optoelectron. (1)

X. Leijtens, “JePPIX: the platform for Indium Phosphide-based photonics,” IET Optoelectron. 5(5), 202–206 (2011).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Opt. Express (2)

Other (2)

P. Acedo, G. Carpintero, A. R. Criado, and K. Yvind, “Photonic Synthesis of sub-THz Signals Using Mode-Locked Single QW Lasers and Tunable Fabry-Perot Fiber Filters,” in European Microwave Week EuMIC11-4, Paris, France (2011).

P. Vasil’ev, Ultrafast Diode Lasers: Fundamentals and Applications (Artech House Publishers, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical spectrum (left) and detailed optical spectrum (left inset); electrical spectrum of the fundamental mode-locked frequency (center); and SHG autocorrelation trace with Lorentzian fit (right).

Fig. 2
Fig. 2

CW Sub-THz Photonic Synthesis setup. See text for details.

Fig. 3
Fig. 3

Direct harmonic generation. Optical spectrum (left) before photomixing, and the generated electrical spectrum after photomixing (right, RBW = 30 kHz), observed at all the harmonics frequencies (fundamental frequency of the PMLL is fML = 9.92 GHz).

Fig. 4
Fig. 4

Photonic synthesis. Optical spectra (left) before photomixing, and the corresponding generated electrical spectra after photomixing (right, RBW = 30 kHz)) for signals between 20 GHz and 119 GHz.

Fig. 5
Fig. 5

Electrical peak power (black squares) and measurement floor (red circles) of the electrical signals synthesized with our CW THz photonic synthesis setup.

Fig. 6
Fig. 6

Comparison between all-modes-beating and two-mode-beating of the 3-dB linewidth (left) and the 10-dB linewidth (right).

Metrics