Abstract

We present a 3D-visual laser-diode-based photoacoustic imaging (LD-PAI) system with a pulsed semiconductor laser source, which has the properties of being inexpensive, portable, and durable. The laser source was operated at a wavelength of 905 nm with a repetition rate of 0.8 KHz. The energy density on the sample surface is about 2.35 mJ/cm2 with a pulse energy as low as 5.6 μJ. By raster-scanning, preliminary 3D volumetric renderings of the knotted and helical blood vessel phantoms have been visualized integrally with an axial resolution of 1.1 mm and a lateral resolution of 0.5 mm, and typical 2D photoacoustic image slices with different thickness and orientation were produced with clarity for detailed comparison and analysis in 3D diagnostic visualization. In addition, the pulsed laser source was integrated with the optical lens group and the 3D adjustable rotational stage, with the result that the compact volume of the total radiation source is only 10 × 3 × 3 cm3. Our goal is to significantly reduce the costs and sizes of the deep 3D-visual PAI system for future producibility.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Harrison, J. C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, and R. J. Zemp, “Combined photoacoustic and ultrasound biomicroscopy,” Opt. Express 17(24), 22041–22046 (2009).
    [CrossRef] [PubMed]
  2. R. Olafsson, D. R. Bauer, L. G. Montilla, and R. S. Witte, “Real-time, contrast enhanced photoacoustic imaging of cancer in a mouse window chamber,” Opt. Express 18(18), 18625–18632 (2010).
    [CrossRef] [PubMed]
  3. D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87(19), 194101 (2005).
    [CrossRef]
  4. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  5. L. Zeng, D. Xing, H. Gu, D. Yang, S. Yang, and L. Xiang, “High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet,” Med. Phys. 34(2), 556–563 (2007).
    [CrossRef] [PubMed]
  6. D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
    [CrossRef] [PubMed]
  7. J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
    [CrossRef] [PubMed]
  8. J. L. Su, B. Wang, and S. Y. Emelianov, “Photoacoustic imaging of coronary artery stents,” Opt. Express 17(22), 19894–19901 (2009).
    [CrossRef] [PubMed]
  9. M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
    [CrossRef] [PubMed]
  10. Z. X. Xie, S. L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. D. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
    [CrossRef] [PubMed]
  11. K. Jansen, A. F. van der Steen, H. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36(5), 597–599 (2011).
    [CrossRef] [PubMed]
  12. E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
    [CrossRef] [PubMed]
  13. Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
    [CrossRef]
  14. Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous medium by photoacoustic tomography coupled with diffusion equation based regularized Newton Method,” Opt. Express 15(26), 18076–18081 (2007).
    [CrossRef]
  15. P. C. Li, C. W. Wei, and Y. L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008).
    [CrossRef] [PubMed]
  16. K. Homan, S. Kim, Y. S. Chen, B. Wang, S. Mallidi, and S. Emelianov, “Prospects of molecular photoacoustic imaging at 1064 nm wavelength,” Opt. Lett. 35(15), 2663–2665 (2010).
    [CrossRef] [PubMed]
  17. A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, “Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett. 10(6), 2168–2172 (2010).
    [CrossRef] [PubMed]
  18. Y. Wang, S. Hu, K. Maslov, Y. Zhang, Y. N. Xia, and L. V. Wang, “In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure,” Opt. Lett. 36(7), 1029–1031 (2011).
    [CrossRef] [PubMed]
  19. P. Ephrat, G. C. Albert, M. B. Roumeliotis, M. Belton, F. S. Prato, and J. J. Carson, “Localization of spherical lesions in tumor-mimicking phantoms by 3D sparse array photoacoustic imaging,” Med. Phys. 37(4), 1619–1628 (2010).
    [CrossRef] [PubMed]
  20. J. Staley, P. Grogan, A. K. Samadi, H. Z. Cui, M. S. Cohen, and X. M. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
    [CrossRef] [PubMed]
  21. R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
    [CrossRef] [PubMed]
  22. T. J. Allen and P. C. Beard, “Dual wavelength laser diode excitation source for 2D photoacoustic imaging,” Proc. SPIE 6437, 64371U, 64371U-9 (2007).
    [CrossRef]
  23. T. J. Allen and P. C. Beard, “Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31(23), 3462–3464 (2006).
    [CrossRef] [PubMed]
  24. K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
    [CrossRef] [PubMed]
  25. M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18(9), 9076–9087 (2010).
    [CrossRef] [PubMed]
  26. S. Y. Su and P. C. Li, “Coded excitation for photoacoustic imaging using a high-speed diode laser,” Opt. Express 19(2), 1174–1182 (2011).
    [CrossRef] [PubMed]
  27. W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3D surface construction algorithm,” Comput. Graph. 21(4), 163–169 (1987).
    [CrossRef]
  28. S. Raman and R. Wenger, “Quality isosurface mesh generation using an extended marching cubes lookup table,” Comput. Graph. Forum 27(3), 791–798 (2008).
    [CrossRef]
  29. K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
    [CrossRef] [PubMed]
  30. L. M. Zeng, G. D. Liu, D. W. Yang, Z. Ren, and Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).
  31. J. M. Yang, K. Maslov, H. C. Yang, Q. F. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
    [CrossRef] [PubMed]
  32. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express 16(5), 3362–3367 (2008).
    [CrossRef] [PubMed]
  33. Y. Yuan, S. H. Yang, and D. Xing, “Preclinical photoacoustic imaging endoscope based on acousto-optic coaxial system using ring transducer array,” Opt. Lett. 35(13), 2266–2268 (2010).
    [CrossRef] [PubMed]

2011

2010

M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18(9), 9076–9087 (2010).
[CrossRef] [PubMed]

Y. Yuan, S. H. Yang, and D. Xing, “Preclinical photoacoustic imaging endoscope based on acousto-optic coaxial system using ring transducer array,” Opt. Lett. 35(13), 2266–2268 (2010).
[CrossRef] [PubMed]

P. Ephrat, G. C. Albert, M. B. Roumeliotis, M. Belton, F. S. Prato, and J. J. Carson, “Localization of spherical lesions in tumor-mimicking phantoms by 3D sparse array photoacoustic imaging,” Med. Phys. 37(4), 1619–1628 (2010).
[CrossRef] [PubMed]

J. Staley, P. Grogan, A. K. Samadi, H. Z. Cui, M. S. Cohen, and X. M. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[CrossRef] [PubMed]

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[CrossRef] [PubMed]

K. Homan, S. Kim, Y. S. Chen, B. Wang, S. Mallidi, and S. Emelianov, “Prospects of molecular photoacoustic imaging at 1064 nm wavelength,” Opt. Lett. 35(15), 2663–2665 (2010).
[CrossRef] [PubMed]

A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, “Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett. 10(6), 2168–2172 (2010).
[CrossRef] [PubMed]

R. Olafsson, D. R. Bauer, L. G. Montilla, and R. S. Witte, “Real-time, contrast enhanced photoacoustic imaging of cancer in a mouse window chamber,” Opt. Express 18(18), 18625–18632 (2010).
[CrossRef] [PubMed]

2009

T. Harrison, J. C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, and R. J. Zemp, “Combined photoacoustic and ultrasound biomicroscopy,” Opt. Express 17(24), 22041–22046 (2009).
[CrossRef] [PubMed]

J. L. Su, B. Wang, and S. Y. Emelianov, “Photoacoustic imaging of coronary artery stents,” Opt. Express 17(22), 19894–19901 (2009).
[CrossRef] [PubMed]

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

L. M. Zeng, G. D. Liu, D. W. Yang, Z. Ren, and Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

J. M. Yang, K. Maslov, H. C. Yang, Q. F. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[CrossRef] [PubMed]

2008

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express 16(5), 3362–3367 (2008).
[CrossRef] [PubMed]

S. Raman and R. Wenger, “Quality isosurface mesh generation using an extended marching cubes lookup table,” Comput. Graph. Forum 27(3), 791–798 (2008).
[CrossRef]

P. C. Li, C. W. Wei, and Y. L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008).
[CrossRef] [PubMed]

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[CrossRef] [PubMed]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

2007

L. Zeng, D. Xing, H. Gu, D. Yang, S. Yang, and L. Xiang, “High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet,” Med. Phys. 34(2), 556–563 (2007).
[CrossRef] [PubMed]

D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
[CrossRef] [PubMed]

Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous medium by photoacoustic tomography coupled with diffusion equation based regularized Newton Method,” Opt. Express 15(26), 18076–18081 (2007).
[CrossRef]

T. J. Allen and P. C. Beard, “Dual wavelength laser diode excitation source for 2D photoacoustic imaging,” Proc. SPIE 6437, 64371U, 64371U-9 (2007).
[CrossRef]

2006

T. J. Allen and P. C. Beard, “Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31(23), 3462–3464 (2006).
[CrossRef] [PubMed]

R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[CrossRef] [PubMed]

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

2005

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87(19), 194101 (2005).
[CrossRef]

1993

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
[CrossRef] [PubMed]

1987

W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3D surface construction algorithm,” Comput. Graph. 21(4), 163–169 (1987).
[CrossRef]

Aguirre, A.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Albert, G. C.

P. Ephrat, G. C. Albert, M. B. Roumeliotis, M. Belton, F. S. Prato, and J. J. Carson, “Localization of spherical lesions in tumor-mimicking phantoms by 3D sparse array photoacoustic imaging,” Med. Phys. 37(4), 1619–1628 (2010).
[CrossRef] [PubMed]

Allen, T. J.

T. J. Allen and P. C. Beard, “Dual wavelength laser diode excitation source for 2D photoacoustic imaging,” Proc. SPIE 6437, 64371U, 64371U-9 (2007).
[CrossRef]

T. J. Allen and P. C. Beard, “Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31(23), 3462–3464 (2006).
[CrossRef] [PubMed]

Amirian, J. H.

Bauer, D. R.

Beard, P. C.

T. J. Allen and P. C. Beard, “Dual wavelength laser diode excitation source for 2D photoacoustic imaging,” Proc. SPIE 6437, 64371U, 64371U-9 (2007).
[CrossRef]

T. J. Allen and P. C. Beard, “Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31(23), 3462–3464 (2006).
[CrossRef] [PubMed]

Beckmann, M. F.

Belton, M.

P. Ephrat, G. C. Albert, M. B. Roumeliotis, M. Belton, F. S. Prato, and J. J. Carson, “Localization of spherical lesions in tumor-mimicking phantoms by 3D sparse array photoacoustic imaging,” Med. Phys. 37(4), 1619–1628 (2010).
[CrossRef] [PubMed]

Bodapati, S.

A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, “Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett. 10(6), 2168–2172 (2010).
[CrossRef] [PubMed]

Brecht, H. P.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[CrossRef] [PubMed]

Carson, J. J.

P. Ephrat, G. C. Albert, M. B. Roumeliotis, M. Belton, F. S. Prato, and J. J. Carson, “Localization of spherical lesions in tumor-mimicking phantoms by 3D sparse array photoacoustic imaging,” Med. Phys. 37(4), 1619–1628 (2010).
[CrossRef] [PubMed]

Carson, P. L.

Castillo, D.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Chen, S. L.

Chen, X.

A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, “Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett. 10(6), 2168–2172 (2010).
[CrossRef] [PubMed]

Chen, Y. S.

Christison, G. B.

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
[CrossRef] [PubMed]

Cline, H. E.

W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3D surface construction algorithm,” Comput. Graph. 21(4), 163–169 (1987).
[CrossRef]

Cohen, M. S.

J. Staley, P. Grogan, A. K. Samadi, H. Z. Cui, M. S. Cohen, and X. M. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[CrossRef] [PubMed]

Conjusteau, A.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[CrossRef] [PubMed]

Cui, H. Z.

J. Staley, P. Grogan, A. K. Samadi, H. Z. Cui, M. S. Cohen, and X. M. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[CrossRef] [PubMed]

Dai, H.

A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, “Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett. 10(6), 2168–2172 (2010).
[CrossRef] [PubMed]

de la Zerda, A.

A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, “Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett. 10(6), 2168–2172 (2010).
[CrossRef] [PubMed]

Emelianov, S.

Emelianov, S. Y.

Ephrat, P.

P. Ephrat, G. C. Albert, M. B. Roumeliotis, M. Belton, F. S. Prato, and J. J. Carson, “Localization of spherical lesions in tumor-mimicking phantoms by 3D sparse array photoacoustic imaging,” Med. Phys. 37(4), 1619–1628 (2010).
[CrossRef] [PubMed]

Ermilov, S. A.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[CrossRef] [PubMed]

Friedrich, C. S.

Fronheiser, M. P.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[CrossRef] [PubMed]

Galanzha, E. I.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

Gambhir, S. S.

A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, “Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett. 10(6), 2168–2172 (2010).
[CrossRef] [PubMed]

Gamelin, J.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Gerhardt, N. C.

Grogan, P.

J. Staley, P. Grogan, A. K. Samadi, H. Z. Cui, M. S. Cohen, and X. M. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[CrossRef] [PubMed]

Gu, H.

L. Zeng, D. Xing, H. Gu, D. Yang, S. Yang, and L. Xiang, “High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet,” Med. Phys. 34(2), 556–563 (2007).
[CrossRef] [PubMed]

Gu, H. M.

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87(19), 194101 (2005).
[CrossRef]

Guo, L. J.

Harrison, T.

Hodgson, P.

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
[CrossRef] [PubMed]

Hofmann, M. R.

Homan, K.

Hu, S.

Huang, F.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Huang, Z.

L. M. Zeng, G. D. Liu, D. W. Yang, Z. Ren, and Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

Jansen, K.

Jiang, H.

Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous medium by photoacoustic tomography coupled with diffusion equation based regularized Newton Method,” Opt. Express 15(26), 18076–18081 (2007).
[CrossRef]

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
[CrossRef]

Kelly, T.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

Khuri-Yakub, B. T.

A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, “Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett. 10(6), 2168–2172 (2010).
[CrossRef] [PubMed]

Kim, J. W.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

Kim, S.

Kolkman, R. G. M.

R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[CrossRef] [PubMed]

Li, P. C.

Ling, T.

Litovsky, S. H.

Liu, G. D.

L. M. Zeng, G. D. Liu, D. W. Yang, Z. Ren, and Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

Liu, Z.

A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, “Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett. 10(6), 2168–2172 (2010).
[CrossRef] [PubMed]

Lorensen, W. E.

W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3D surface construction algorithm,” Comput. Graph. 21(4), 163–169 (1987).
[CrossRef]

Lu, H.

MacKenzie, H. A.

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
[CrossRef] [PubMed]

Mallidi, S.

Maslov, K.

Y. Wang, S. Hu, K. Maslov, Y. Zhang, Y. N. Xia, and L. V. Wang, “In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure,” Opt. Lett. 36(7), 1029–1031 (2011).
[CrossRef] [PubMed]

J. M. Yang, K. Maslov, H. C. Yang, Q. F. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[CrossRef] [PubMed]

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Mathewson, K.

Maurudis, A.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Mehta, K.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[CrossRef] [PubMed]

Mienkina, M. P.

Montilla, L. G.

Olafsson, R.

Oosterhuis, J. W.

Oraevsky, A. A.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[CrossRef] [PubMed]

Prato, F. S.

P. Ephrat, G. C. Albert, M. B. Roumeliotis, M. Belton, F. S. Prato, and J. J. Carson, “Localization of spherical lesions in tumor-mimicking phantoms by 3D sparse array photoacoustic imaging,” Med. Phys. 37(4), 1619–1628 (2010).
[CrossRef] [PubMed]

Quan, K. M.

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
[CrossRef] [PubMed]

Raman, S.

S. Raman and R. Wenger, “Quality isosurface mesh generation using an extended marching cubes lookup table,” Comput. Graph. Forum 27(3), 791–798 (2008).
[CrossRef]

Ranasinghesagara, J. C.

Ren, Z.

L. M. Zeng, G. D. Liu, D. W. Yang, Z. Ren, and Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

Roumeliotis, M. B.

P. Ephrat, G. C. Albert, M. B. Roumeliotis, M. Belton, F. S. Prato, and J. J. Carson, “Localization of spherical lesions in tumor-mimicking phantoms by 3D sparse array photoacoustic imaging,” Med. Phys. 37(4), 1619–1628 (2010).
[CrossRef] [PubMed]

Samadi, A. K.

J. Staley, P. Grogan, A. K. Samadi, H. Z. Cui, M. S. Cohen, and X. M. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[CrossRef] [PubMed]

Schiffner, M. F.

Schmitz, G.

Sethuraman, S.

Shashkov, E. V.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

Sheu, Y. L.

Shung, K. K.

Smalling, R. W.

Staley, J.

J. Staley, P. Grogan, A. K. Samadi, H. Z. Cui, M. S. Cohen, and X. M. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[CrossRef] [PubMed]

Steenbergen, W.

R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[CrossRef] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Su, J. L.

Su, R.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[CrossRef] [PubMed]

Su, S. Y.

Tan, Y.

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87(19), 194101 (2005).
[CrossRef]

Teed, R.

A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, “Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett. 10(6), 2168–2172 (2010).
[CrossRef] [PubMed]

Vaithilingam, S.

A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, “Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett. 10(6), 2168–2172 (2010).
[CrossRef] [PubMed]

van Beusekom, H. M.

van der Steen, A. F.

van Leeuwen, T. G.

R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[CrossRef] [PubMed]

van Soest, G.

Walsh, A.

Wang, B.

Wang, L. V.

Y. Wang, S. Hu, K. Maslov, Y. Zhang, Y. N. Xia, and L. V. Wang, “In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure,” Opt. Lett. 36(7), 1029–1031 (2011).
[CrossRef] [PubMed]

J. M. Yang, K. Maslov, H. C. Yang, Q. F. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[CrossRef] [PubMed]

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[CrossRef] [PubMed]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Wang, Q.

Wang, X. D.

Wang, Y.

Wei, C. W.

Wenger, R.

S. Raman and R. Wenger, “Quality isosurface mesh generation using an extended marching cubes lookup table,” Comput. Graph. Forum 27(3), 791–798 (2008).
[CrossRef]

Witte, R. S.

Xia, Y. N.

Xiang, L.

L. Zeng, D. Xing, H. Gu, D. Yang, S. Yang, and L. Xiang, “High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet,” Med. Phys. 34(2), 556–563 (2007).
[CrossRef] [PubMed]

Xiang, L. Z.

Xie, Z. X.

Xing, D.

Y. Yuan, S. H. Yang, and D. Xing, “Preclinical photoacoustic imaging endoscope based on acousto-optic coaxial system using ring transducer array,” Opt. Lett. 35(13), 2266–2268 (2010).
[CrossRef] [PubMed]

L. Zeng, D. Xing, H. Gu, D. Yang, S. Yang, and L. Xiang, “High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet,” Med. Phys. 34(2), 556–563 (2007).
[CrossRef] [PubMed]

D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
[CrossRef] [PubMed]

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87(19), 194101 (2005).
[CrossRef]

Yang, D.

L. Zeng, D. Xing, H. Gu, D. Yang, S. Yang, and L. Xiang, “High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet,” Med. Phys. 34(2), 556–563 (2007).
[CrossRef] [PubMed]

Yang, D. W.

L. M. Zeng, G. D. Liu, D. W. Yang, Z. Ren, and Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
[CrossRef] [PubMed]

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87(19), 194101 (2005).
[CrossRef]

Yang, H. C.

Yang, J. M.

Yang, L.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

Yang, S.

L. Zeng, D. Xing, H. Gu, D. Yang, S. Yang, and L. Xiang, “High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet,” Med. Phys. 34(2), 556–563 (2007).
[CrossRef] [PubMed]

Yang, S. H.

Yang, X. M.

J. Staley, P. Grogan, A. K. Samadi, H. Z. Cui, M. S. Cohen, and X. M. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[CrossRef] [PubMed]

Yuan, Y.

Yuan, Z.

Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous medium by photoacoustic tomography coupled with diffusion equation based regularized Newton Method,” Opt. Express 15(26), 18076–18081 (2007).
[CrossRef]

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
[CrossRef]

Zemp, R. J.

Zeng, L.

L. Zeng, D. Xing, H. Gu, D. Yang, S. Yang, and L. Xiang, “High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet,” Med. Phys. 34(2), 556–563 (2007).
[CrossRef] [PubMed]

Zeng, L. M.

L. M. Zeng, G. D. Liu, D. W. Yang, Z. Ren, and Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87(19), 194101 (2005).
[CrossRef]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Zhang, Y.

Zharov, V. P.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

Zhou, Q. F.

Zhu, Q.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87(19), 194101 (2005).
[CrossRef]

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
[CrossRef]

Comput. Graph.

W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3D surface construction algorithm,” Comput. Graph. 21(4), 163–169 (1987).
[CrossRef]

Comput. Graph. Forum

S. Raman and R. Wenger, “Quality isosurface mesh generation using an extended marching cubes lookup table,” Comput. Graph. Forum 27(3), 791–798 (2008).
[CrossRef]

J. Biomed. Opt.

J. Staley, P. Grogan, A. K. Samadi, H. Z. Cui, M. S. Cohen, and X. M. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[CrossRef] [PubMed]

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[CrossRef] [PubMed]

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[CrossRef] [PubMed]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Lasers Med. Sci.

R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[CrossRef] [PubMed]

Med. Phys.

P. Ephrat, G. C. Albert, M. B. Roumeliotis, M. Belton, F. S. Prato, and J. J. Carson, “Localization of spherical lesions in tumor-mimicking phantoms by 3D sparse array photoacoustic imaging,” Med. Phys. 37(4), 1619–1628 (2010).
[CrossRef] [PubMed]

L. Zeng, D. Xing, H. Gu, D. Yang, S. Yang, and L. Xiang, “High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet,” Med. Phys. 34(2), 556–563 (2007).
[CrossRef] [PubMed]

Nano Lett.

A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, “Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett. 10(6), 2168–2172 (2010).
[CrossRef] [PubMed]

Nat. Biotechnol.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nat. Nanotechnol.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

Opt. Express

M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18(9), 9076–9087 (2010).
[CrossRef] [PubMed]

S. Y. Su and P. C. Li, “Coded excitation for photoacoustic imaging using a high-speed diode laser,” Opt. Express 19(2), 1174–1182 (2011).
[CrossRef] [PubMed]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express 16(5), 3362–3367 (2008).
[CrossRef] [PubMed]

T. Harrison, J. C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, and R. J. Zemp, “Combined photoacoustic and ultrasound biomicroscopy,” Opt. Express 17(24), 22041–22046 (2009).
[CrossRef] [PubMed]

R. Olafsson, D. R. Bauer, L. G. Montilla, and R. S. Witte, “Real-time, contrast enhanced photoacoustic imaging of cancer in a mouse window chamber,” Opt. Express 18(18), 18625–18632 (2010).
[CrossRef] [PubMed]

D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
[CrossRef] [PubMed]

J. L. Su, B. Wang, and S. Y. Emelianov, “Photoacoustic imaging of coronary artery stents,” Opt. Express 17(22), 19894–19901 (2009).
[CrossRef] [PubMed]

Z. X. Xie, S. L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. D. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
[CrossRef] [PubMed]

Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous medium by photoacoustic tomography coupled with diffusion equation based regularized Newton Method,” Opt. Express 15(26), 18076–18081 (2007).
[CrossRef]

P. C. Li, C. W. Wei, and Y. L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
[CrossRef] [PubMed]

Proc. SPIE

L. M. Zeng, G. D. Liu, D. W. Yang, Z. Ren, and Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

T. J. Allen and P. C. Beard, “Dual wavelength laser diode excitation source for 2D photoacoustic imaging,” Proc. SPIE 6437, 64371U, 64371U-9 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Front of the focusing lens group; (b) the entire radiation source, consisting of the optical lens system, pulsed laser diode, and 3D stage. (c) Schematic of the 3D-visual LD-PAI system. (d) Photoacoustic amplitude profile plotted as a function of the y-axes with a point absorber.

Fig. 2
Fig. 2

(a) 2D photoacoustic reconstructed image of the two inserted carbon rods (diameter, 0.6 mm; distance between the rods, 3.3 mm); (b) Photoacoustic pressure sensitivity distribution plotted as a function of the x- and y-axes; (c) Normalization line profile of the reconstructed image shown in (a) with x = 44.75 mm.

Fig. 3
Fig. 3

(a) 3D rendering of the knotted blood vessel with the viewpoint of view(7, 15). (Inset, photograph of the cross section of the phantom); (b) A typical 2D photoacoustic cross-sectional image in the x-y plane was obtained at z = 7.0 mm, (c) 3D rendering with the viewpoint of view(0, 0). (d) 2D photoacoustic projection image.

Fig. 4
Fig. 4

(a) Photograph of the helical blood vessel phantom. (b) Typical 3D rendering with the viewpoint of view(170, 22), which projects the partial volumetric data with a signal amplitude of 2.0 mV. (c) and (d) 3D renderings of the photoacoustic raster-scanning data set with the different viewpoints of view(0, 0) and view(−135, 12), respectively.

Fig. 5
Fig. 5

(a) Photoacoustic projection image of the helical blood vessel. (b) Photoacoustic projection image slice of the pinch point at x = 46.5 mm with a thickness of 0.5 mm. (c) and (d) Photoacoustic projection image slices at x = 37.5 mm with variable thicknesses of 0.5 mm and 5.0 mm, respectively. (e) and (f) 2D x-y B-scan photoacoustic images along the dotted line in (a) on the z-axis of 4.4 and 8.4 mm, respectively.

Metrics