Abstract

We experimentally demonstrate pulsewidth-tunable picosecond multi-wavelength pulse generation at 10 Gb/s by the use of a Raman amplification-based adiabatic soliton compressor (RA-ASC). Multi-wavelength seed pulse trains are generated by a commercially available electroabsorption modulator and then compressed by using the RA-ASC. The pulsewidths of the compressed pulses can be simultaneously controlled from 16.0 ps to 2.0 ps by adjusting Raman pump power. Operating wavelength range of our scheme are also investigated, showing the possibility for wide channel spacing operations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20, 2066–2068 (2008).
    [CrossRef]
  2. W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength mode-locked fiber-ring laser based on reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19, 1418–1420 (2007).
    [CrossRef]
  3. Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on super-continuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
    [CrossRef]
  4. Y. Dong, Z. Li, C. Yu, Y. J. Wen, Y. Wang, C. Lu, W. Hu, and T. H. Cheng, “Generation of multi-channel short-pulse sources using nonlinear optical loop mirror based on photonic crystal fiber,” in Proc. Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2007), JWA9.
  5. M. Matsuura, N. Kishi, and T. Miki, “Widely pulsewidth-tunable multi-wavelength synchronized pulse generation utilizing a single SOA-based delayed interferometric switch,” IEEE Photon. Technol. Lett. 17, 902–904 (2005).
    [CrossRef]
  6. S. V. Chernikov, D. J. Richardson, E. M. Dianov, and D. N. Payne, “Picosecond soliton pulse compression based on dispersion decreasing fiber,” Electron. Lett. 28, 1842–1844 (1992).
    [CrossRef]
  7. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994).
    [CrossRef] [PubMed]
  8. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994).
    [CrossRef]
  9. K. Iwatsuki, K. Suzuki, and S. Nishi, “Adiabatic soliton compression of gain-switched DFB-LD pulse by distributed fiber Raman amplification,” IEEE Photon. Technol. Lett. 3, 1074–1076 (1991).
    [CrossRef]
  10. T. Kogure, J. H. Lee, and D. J. Richardson, “Wavelength and duration-tunable 10-GHz 1.3-ps pulse source using dispersion decreasing fiber-based distributed Raman amplification,” IEEE Photon. Technol. Lett. 16, 1167–1169 (2004).
    [CrossRef]
  11. M. Matsuura, B. P. Samarakoon, and N. Kishi, “Wavelength-shift-free adjustment of the pulsewidth in return-to-zero on-off keyed signals by means of pulse compression in distributed Raman amplification,” IEEE Photon. Technol. Lett. 21, 572–574 (2009).
    [CrossRef]
  12. Q. Nguyen-The, H. Nguyen Tan, M. Matsuura, and N. Kishi, “Multi-wavelength pulse generation using a Raman amplification-based adiabatic soliton compressor,” in Proc. 37th European Conference and Exhibition on Optical Communication (ECOC) (2011), We.10.P1.10.
  13. Q. Nguyen-The, M. Matsuura, H. Nguyen Tan, and N. Kishi, “All-optical NRZ-to-RZ data format conversion with picosecond duration-tunable and pedestal suppressed operations,” IEICE Transaction on Electronics,  E94-C, 1160–1166 (2011).
    [CrossRef]
  14. H. Nguyen Tan, Q. Nguyen-The, M. Matsuura, and N. Kishi, “Raman amplification-based multiwavelength synchronous pulse compressor and its application to all-channel OTDM demultiplexing in a single parametric-gate,” in Proc. 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), We.P-6.
  15. P Govind. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 1995).

2011 (1)

Q. Nguyen-The, M. Matsuura, H. Nguyen Tan, and N. Kishi, “All-optical NRZ-to-RZ data format conversion with picosecond duration-tunable and pedestal suppressed operations,” IEICE Transaction on Electronics,  E94-C, 1160–1166 (2011).
[CrossRef]

2009 (1)

M. Matsuura, B. P. Samarakoon, and N. Kishi, “Wavelength-shift-free adjustment of the pulsewidth in return-to-zero on-off keyed signals by means of pulse compression in distributed Raman amplification,” IEEE Photon. Technol. Lett. 21, 572–574 (2009).
[CrossRef]

2008 (1)

Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20, 2066–2068 (2008).
[CrossRef]

2007 (1)

W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength mode-locked fiber-ring laser based on reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19, 1418–1420 (2007).
[CrossRef]

2005 (1)

M. Matsuura, N. Kishi, and T. Miki, “Widely pulsewidth-tunable multi-wavelength synchronized pulse generation utilizing a single SOA-based delayed interferometric switch,” IEEE Photon. Technol. Lett. 17, 902–904 (2005).
[CrossRef]

2004 (1)

T. Kogure, J. H. Lee, and D. J. Richardson, “Wavelength and duration-tunable 10-GHz 1.3-ps pulse source using dispersion decreasing fiber-based distributed Raman amplification,” IEEE Photon. Technol. Lett. 16, 1167–1169 (2004).
[CrossRef]

2003 (1)

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on super-continuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

1994 (2)

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994).
[CrossRef]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994).
[CrossRef] [PubMed]

1992 (1)

S. V. Chernikov, D. J. Richardson, E. M. Dianov, and D. N. Payne, “Picosecond soliton pulse compression based on dispersion decreasing fiber,” Electron. Lett. 28, 1842–1844 (1992).
[CrossRef]

1991 (1)

K. Iwatsuki, K. Suzuki, and S. Nishi, “Adiabatic soliton compression of gain-switched DFB-LD pulse by distributed fiber Raman amplification,” IEEE Photon. Technol. Lett. 3, 1074–1076 (1991).
[CrossRef]

Chen, Z.

Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20, 2066–2068 (2008).
[CrossRef]

Cheng, T. H.

Y. Dong, Z. Li, C. Yu, Y. J. Wen, Y. Wang, C. Lu, W. Hu, and T. H. Cheng, “Generation of multi-channel short-pulse sources using nonlinear optical loop mirror based on photonic crystal fiber,” in Proc. Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2007), JWA9.

Chernikov, S. V.

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994).
[CrossRef]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994).
[CrossRef] [PubMed]

S. V. Chernikov, D. J. Richardson, E. M. Dianov, and D. N. Payne, “Picosecond soliton pulse compression based on dispersion decreasing fiber,” Electron. Lett. 28, 1842–1844 (1992).
[CrossRef]

Dianov, E. M.

S. V. Chernikov, D. J. Richardson, E. M. Dianov, and D. N. Payne, “Picosecond soliton pulse compression based on dispersion decreasing fiber,” Electron. Lett. 28, 1842–1844 (1992).
[CrossRef]

Dong, Y.

Y. Dong, Z. Li, C. Yu, Y. J. Wen, Y. Wang, C. Lu, W. Hu, and T. H. Cheng, “Generation of multi-channel short-pulse sources using nonlinear optical loop mirror based on photonic crystal fiber,” in Proc. Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2007), JWA9.

Dutta, N. K.

Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20, 2066–2068 (2008).
[CrossRef]

Furusawa, K.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on super-continuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

Govind, P

P Govind. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 1995).

Hu, W.

Y. Dong, Z. Li, C. Yu, Y. J. Wen, Y. Wang, C. Lu, W. Hu, and T. H. Cheng, “Generation of multi-channel short-pulse sources using nonlinear optical loop mirror based on photonic crystal fiber,” in Proc. Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2007), JWA9.

Iwatsuki, K.

K. Iwatsuki, K. Suzuki, and S. Nishi, “Adiabatic soliton compression of gain-switched DFB-LD pulse by distributed fiber Raman amplification,” IEEE Photon. Technol. Lett. 3, 1074–1076 (1991).
[CrossRef]

Kashyap, R.

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994).
[CrossRef] [PubMed]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994).
[CrossRef]

Kishi, N.

Q. Nguyen-The, M. Matsuura, H. Nguyen Tan, and N. Kishi, “All-optical NRZ-to-RZ data format conversion with picosecond duration-tunable and pedestal suppressed operations,” IEICE Transaction on Electronics,  E94-C, 1160–1166 (2011).
[CrossRef]

M. Matsuura, B. P. Samarakoon, and N. Kishi, “Wavelength-shift-free adjustment of the pulsewidth in return-to-zero on-off keyed signals by means of pulse compression in distributed Raman amplification,” IEEE Photon. Technol. Lett. 21, 572–574 (2009).
[CrossRef]

M. Matsuura, N. Kishi, and T. Miki, “Widely pulsewidth-tunable multi-wavelength synchronized pulse generation utilizing a single SOA-based delayed interferometric switch,” IEEE Photon. Technol. Lett. 17, 902–904 (2005).
[CrossRef]

Q. Nguyen-The, H. Nguyen Tan, M. Matsuura, and N. Kishi, “Multi-wavelength pulse generation using a Raman amplification-based adiabatic soliton compressor,” in Proc. 37th European Conference and Exhibition on Optical Communication (ECOC) (2011), We.10.P1.10.

H. Nguyen Tan, Q. Nguyen-The, M. Matsuura, and N. Kishi, “Raman amplification-based multiwavelength synchronous pulse compressor and its application to all-channel OTDM demultiplexing in a single parametric-gate,” in Proc. 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), We.P-6.

Kogure, T.

T. Kogure, J. H. Lee, and D. J. Richardson, “Wavelength and duration-tunable 10-GHz 1.3-ps pulse source using dispersion decreasing fiber-based distributed Raman amplification,” IEEE Photon. Technol. Lett. 16, 1167–1169 (2004).
[CrossRef]

Lee, J. H.

T. Kogure, J. H. Lee, and D. J. Richardson, “Wavelength and duration-tunable 10-GHz 1.3-ps pulse source using dispersion decreasing fiber-based distributed Raman amplification,” IEEE Photon. Technol. Lett. 16, 1167–1169 (2004).
[CrossRef]

Li, Z.

Y. Dong, Z. Li, C. Yu, Y. J. Wen, Y. Wang, C. Lu, W. Hu, and T. H. Cheng, “Generation of multi-channel short-pulse sources using nonlinear optical loop mirror based on photonic crystal fiber,” in Proc. Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2007), JWA9.

Liu, L.

W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength mode-locked fiber-ring laser based on reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19, 1418–1420 (2007).
[CrossRef]

Lu, C.

Y. Dong, Z. Li, C. Yu, Y. J. Wen, Y. Wang, C. Lu, W. Hu, and T. H. Cheng, “Generation of multi-channel short-pulse sources using nonlinear optical loop mirror based on photonic crystal fiber,” in Proc. Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2007), JWA9.

Ma, S.

Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20, 2066–2068 (2008).
[CrossRef]

Matsuura, M.

Q. Nguyen-The, M. Matsuura, H. Nguyen Tan, and N. Kishi, “All-optical NRZ-to-RZ data format conversion with picosecond duration-tunable and pedestal suppressed operations,” IEICE Transaction on Electronics,  E94-C, 1160–1166 (2011).
[CrossRef]

M. Matsuura, B. P. Samarakoon, and N. Kishi, “Wavelength-shift-free adjustment of the pulsewidth in return-to-zero on-off keyed signals by means of pulse compression in distributed Raman amplification,” IEEE Photon. Technol. Lett. 21, 572–574 (2009).
[CrossRef]

M. Matsuura, N. Kishi, and T. Miki, “Widely pulsewidth-tunable multi-wavelength synchronized pulse generation utilizing a single SOA-based delayed interferometric switch,” IEEE Photon. Technol. Lett. 17, 902–904 (2005).
[CrossRef]

Q. Nguyen-The, H. Nguyen Tan, M. Matsuura, and N. Kishi, “Multi-wavelength pulse generation using a Raman amplification-based adiabatic soliton compressor,” in Proc. 37th European Conference and Exhibition on Optical Communication (ECOC) (2011), We.10.P1.10.

H. Nguyen Tan, Q. Nguyen-The, M. Matsuura, and N. Kishi, “Raman amplification-based multiwavelength synchronous pulse compressor and its application to all-channel OTDM demultiplexing in a single parametric-gate,” in Proc. 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), We.P-6.

Miki, T.

M. Matsuura, N. Kishi, and T. Miki, “Widely pulsewidth-tunable multi-wavelength synchronized pulse generation utilizing a single SOA-based delayed interferometric switch,” IEEE Photon. Technol. Lett. 17, 902–904 (2005).
[CrossRef]

Monro, T. M.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on super-continuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

Nguyen Tan, H.

Q. Nguyen-The, M. Matsuura, H. Nguyen Tan, and N. Kishi, “All-optical NRZ-to-RZ data format conversion with picosecond duration-tunable and pedestal suppressed operations,” IEICE Transaction on Electronics,  E94-C, 1160–1166 (2011).
[CrossRef]

Q. Nguyen-The, H. Nguyen Tan, M. Matsuura, and N. Kishi, “Multi-wavelength pulse generation using a Raman amplification-based adiabatic soliton compressor,” in Proc. 37th European Conference and Exhibition on Optical Communication (ECOC) (2011), We.10.P1.10.

H. Nguyen Tan, Q. Nguyen-The, M. Matsuura, and N. Kishi, “Raman amplification-based multiwavelength synchronous pulse compressor and its application to all-channel OTDM demultiplexing in a single parametric-gate,” in Proc. 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), We.P-6.

Nguyen-The, Q.

Q. Nguyen-The, M. Matsuura, H. Nguyen Tan, and N. Kishi, “All-optical NRZ-to-RZ data format conversion with picosecond duration-tunable and pedestal suppressed operations,” IEICE Transaction on Electronics,  E94-C, 1160–1166 (2011).
[CrossRef]

Q. Nguyen-The, H. Nguyen Tan, M. Matsuura, and N. Kishi, “Multi-wavelength pulse generation using a Raman amplification-based adiabatic soliton compressor,” in Proc. 37th European Conference and Exhibition on Optical Communication (ECOC) (2011), We.10.P1.10.

H. Nguyen Tan, Q. Nguyen-The, M. Matsuura, and N. Kishi, “Raman amplification-based multiwavelength synchronous pulse compressor and its application to all-channel OTDM demultiplexing in a single parametric-gate,” in Proc. 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), We.P-6.

Nishi, S.

K. Iwatsuki, K. Suzuki, and S. Nishi, “Adiabatic soliton compression of gain-switched DFB-LD pulse by distributed fiber Raman amplification,” IEEE Photon. Technol. Lett. 3, 1074–1076 (1991).
[CrossRef]

Payne, D. N.

S. V. Chernikov, D. J. Richardson, E. M. Dianov, and D. N. Payne, “Picosecond soliton pulse compression based on dispersion decreasing fiber,” Electron. Lett. 28, 1842–1844 (1992).
[CrossRef]

Petropoulos, P.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on super-continuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

Richardson, D. J.

T. Kogure, J. H. Lee, and D. J. Richardson, “Wavelength and duration-tunable 10-GHz 1.3-ps pulse source using dispersion decreasing fiber-based distributed Raman amplification,” IEEE Photon. Technol. Lett. 16, 1167–1169 (2004).
[CrossRef]

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on super-continuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

S. V. Chernikov, D. J. Richardson, E. M. Dianov, and D. N. Payne, “Picosecond soliton pulse compression based on dispersion decreasing fiber,” Electron. Lett. 28, 1842–1844 (1992).
[CrossRef]

Samarakoon, B. P.

M. Matsuura, B. P. Samarakoon, and N. Kishi, “Wavelength-shift-free adjustment of the pulsewidth in return-to-zero on-off keyed signals by means of pulse compression in distributed Raman amplification,” IEEE Photon. Technol. Lett. 21, 572–574 (2009).
[CrossRef]

Sun, H.

Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20, 2066–2068 (2008).
[CrossRef]

Sun, J.

W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength mode-locked fiber-ring laser based on reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19, 1418–1420 (2007).
[CrossRef]

Suzuki, K.

K. Iwatsuki, K. Suzuki, and S. Nishi, “Adiabatic soliton compression of gain-switched DFB-LD pulse by distributed fiber Raman amplification,” IEEE Photon. Technol. Lett. 3, 1074–1076 (1991).
[CrossRef]

Taylor, J. R.

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994).
[CrossRef] [PubMed]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994).
[CrossRef]

Wang, J.

W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength mode-locked fiber-ring laser based on reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19, 1418–1420 (2007).
[CrossRef]

Wang, Y.

Y. Dong, Z. Li, C. Yu, Y. J. Wen, Y. Wang, C. Lu, W. Hu, and T. H. Cheng, “Generation of multi-channel short-pulse sources using nonlinear optical loop mirror based on photonic crystal fiber,” in Proc. Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2007), JWA9.

Wen, Y. J.

Y. Dong, Z. Li, C. Yu, Y. J. Wen, Y. Wang, C. Lu, W. Hu, and T. H. Cheng, “Generation of multi-channel short-pulse sources using nonlinear optical loop mirror based on photonic crystal fiber,” in Proc. Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2007), JWA9.

Yu, C.

Y. Dong, Z. Li, C. Yu, Y. J. Wen, Y. Wang, C. Lu, W. Hu, and T. H. Cheng, “Generation of multi-channel short-pulse sources using nonlinear optical loop mirror based on photonic crystal fiber,” in Proc. Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2007), JWA9.

Yusoff, Z.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on super-continuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

Zhang, W.

W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength mode-locked fiber-ring laser based on reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19, 1418–1420 (2007).
[CrossRef]

Electron. Lett. (2)

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994).
[CrossRef]

S. V. Chernikov, D. J. Richardson, E. M. Dianov, and D. N. Payne, “Picosecond soliton pulse compression based on dispersion decreasing fiber,” Electron. Lett. 28, 1842–1844 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

M. Matsuura, N. Kishi, and T. Miki, “Widely pulsewidth-tunable multi-wavelength synchronized pulse generation utilizing a single SOA-based delayed interferometric switch,” IEEE Photon. Technol. Lett. 17, 902–904 (2005).
[CrossRef]

K. Iwatsuki, K. Suzuki, and S. Nishi, “Adiabatic soliton compression of gain-switched DFB-LD pulse by distributed fiber Raman amplification,” IEEE Photon. Technol. Lett. 3, 1074–1076 (1991).
[CrossRef]

T. Kogure, J. H. Lee, and D. J. Richardson, “Wavelength and duration-tunable 10-GHz 1.3-ps pulse source using dispersion decreasing fiber-based distributed Raman amplification,” IEEE Photon. Technol. Lett. 16, 1167–1169 (2004).
[CrossRef]

M. Matsuura, B. P. Samarakoon, and N. Kishi, “Wavelength-shift-free adjustment of the pulsewidth in return-to-zero on-off keyed signals by means of pulse compression in distributed Raman amplification,” IEEE Photon. Technol. Lett. 21, 572–574 (2009).
[CrossRef]

Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20, 2066–2068 (2008).
[CrossRef]

W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength mode-locked fiber-ring laser based on reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19, 1418–1420 (2007).
[CrossRef]

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on super-continuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

IEICE Transaction on Electronics (1)

Q. Nguyen-The, M. Matsuura, H. Nguyen Tan, and N. Kishi, “All-optical NRZ-to-RZ data format conversion with picosecond duration-tunable and pedestal suppressed operations,” IEICE Transaction on Electronics,  E94-C, 1160–1166 (2011).
[CrossRef]

Opt. Lett. (1)

Other (4)

H. Nguyen Tan, Q. Nguyen-The, M. Matsuura, and N. Kishi, “Raman amplification-based multiwavelength synchronous pulse compressor and its application to all-channel OTDM demultiplexing in a single parametric-gate,” in Proc. 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), We.P-6.

P Govind. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 1995).

Y. Dong, Z. Li, C. Yu, Y. J. Wen, Y. Wang, C. Lu, W. Hu, and T. H. Cheng, “Generation of multi-channel short-pulse sources using nonlinear optical loop mirror based on photonic crystal fiber,” in Proc. Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2007), JWA9.

Q. Nguyen-The, H. Nguyen Tan, M. Matsuura, and N. Kishi, “Multi-wavelength pulse generation using a Raman amplification-based adiabatic soliton compressor,” in Proc. 37th European Conference and Exhibition on Optical Communication (ECOC) (2011), We.10.P1.10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for generation of multi-wavelength picosecond pulses with tunable pulsewidth and channnel spacing by using a Raman amplification-based adiabatic soliton compressor. ECL: external-cavity laser-diode, EAM: electroabsorption modulation, EDFA: erbium-doped fiber amplifier, TDCM: tunable dispersion-compensating module, AWG: array waveguide grating, VOA: variable optical attenuator, WDM-PC: WDM power controller, TFRL: tunable fiber Raman laser, DSF: dispersion-shifted fiber, OBPF: optical bandpass filter.

Fig. 2
Fig. 2

(a) Optical spectra after RA-ASC, and autocorrelation traces at (a) channel 1 and (b) channel 2 of the output pulses measured in various case of Raman pump power (Pr) with 3.2 nm channel spacing.

Fig. 3
Fig. 3

Raman pump power dependency of (a) the pulsewidth, (b) the peak-to-pedestal ratio of the compressed pulses with 3.2 nm channel spacing.

Fig. 4
Fig. 4

(a) Optical spectra after RA-ASC and autocorrelation traces at (b) channel 1, (c) channel 2 of the output pulses measured in various case channel spacing. Raman pump power was set to Pr,opt in each case.

Fig. 5
Fig. 5

(a) Raman pump power dependency of the pulsewidth of the compressed pulse (at channel 1) and (b) channel spacing dependency of the optimum Raman pump power (Pr,opt) and peak-to-pedestal ratio of the output pulse.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T 0 2 β 2 = 1 γ P

Metrics